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SUMMARY

This thesis studies extremal problems in hypergraph theory, set theory, and graph theory.

Results in this thesis can be divided into seven parts.

In the first part, we study the feasible region Ω(F) of a hypergraph family F , which is the

set of points (x, y) so that there exists a sequence of F-free r-graphs whose shadow densities

approach x and whose edge densities approach y. We prove some general results about the shape

of Ω(F), and study Ω(F) for some specific examples such as the cancellative hypergraphs and

the expansion of cliques.

In the second part, we present a unified framework for proving stability theorems in graph

and hypergraph theory. Our main result reduces stability for a large class of hypergraph Turán

problems to the simpler question of checking that a hypergraph H with large minimum degree

that omits the forbidden structures is vertex-extendable. We illustrate our method by giving

new short proofs to many stability theorems.

In the third part, we provide a construction of finite hypergraph families that have arbitrarily

(but finite) many extremal configurations. This is the first such construction. Before our work,

every family of hypergraphs whose Turán density is known has a unique extremal configuration.

In the fourth part, we study problems that are generalizations of the celebrated Erdős–

Ko–Rado theorem. We give the correct bounds for the size of a family that does not contain

a d-cluster but contains at least two disjoint edges. This resolves a conjecture of Mammoliti

and Britz. We also extend a structural theorem due to Frankl about conditionally intersecting

xiv



SUMMARY (Continued)

3-graphs to the general case, and use it to give new proofs to some theorems in Extremal set

theory. Extending the celebrated Katona intersecting shadow theorem, we give tight bounds for

the size of the shadow of t-intersecting families and families with a bounded matching number.

Finally, resolving a conjecture of Mubayi and Verstraëte, we determine the maximum size of a

family that does not contain nontrivial intersecting subgraphs.

In the fifth part, we study some extensions of the Turán theorem in Graph theory. We

determine the minimum number of copies of a color-critical graph F in a graph with fixed

number of edges and fixed F -covering number. We also consider the local density problem

in K4-free graphs and prove a conjecture of Chung and Graham, and independently, Erdős,

Faudree, Rousseau, and Schelp for all almost-regular K4-free graphs.

In the sixth part, we study the independence number of hypergraps that omit just one

intersection. This is related to Rödl and Šiňajová’s result on the independence number of

(n, k, `)-systems. We also show some explicit constructions of (n, k, `)-systems with small inde-

pendence number. Such constructions are usually very useful in theoretical computer science.

In the last part, we study the feasible region Ωind(F ) of induced graphs F , which is the

set of points (x, y) so that there exists a sequence of graphs whose edge density approaches x

and whose induced F -density approaches y. We prove some general results about the shape

of Ωind(F ), and study Ωind(F ) for some specific examples such as complete bipartite graphs

and complete graphs minus one edge K−r . Our results on K−r sharpen those predicted by the

edge-statistics conjecture of Alon et. al.

xv
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In this section, we list some notations and definitions that will be used frequently later.

• For a positive integer n let [n] = {1, . . . , n}.

• For two positive integers m and n with m ≤ n let [m,n] = {m,m+ 1, . . . , n}.

• For a set V and an integer r ≥ 0 let
(
V
r

)
be the collection of all r-subsets of V .

• An r-uniform hypergraph (henceforth r-graph) H on V is a subset of
(
V
r

)
.

• A graph is a 2-graph.

• Given two r-graphs H and H′ with the same number of vertices the edit-distance of H

and H′ is

d1(H,H′) = min{|H4H ′′| : V (H ′′) = V (H) and H′′ ∼= H′}.

It is well known and easy to confirm that this distance satisfies the triangle inequality.

• For integers ` ≥ r ≥ 2 let Kr
` denote the complete r-graph on ` vertices. If r = 2, we

simplify the notation by omitting the superscript r.

• For a hypergraph H we use V (H) and E(H) to denote the vertex set and edge set of H,

respectively.

• Let v(H) and e(H) denote the size of V (H) and E(H), respectively.

• The edge density of an r-graph H is ρ(H) = e(H)/
(
v(H)
r

)
.

• For a vertex set S ⊂ V (H) the induced subgraph of H on S is denoted by H[S].

• For two disjoint vertex sets S, T ⊂ V (H) the hypergraph H[S, T ] denotes the set of edges

in H that have nonempty intersection with both S and T .
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• Given an r-graph H the shadow ∂H of H is an (r − 1)-graph which is defined as

∂H =

{
A ∈

(
V (H)

r − 1

)
: ∃B ∈ H such that A ⊂ B

}
.

• For integers r > i ≥ 2 define the i-th shadow of H as ∂iH = ∂(∂i−1H), where ∂1H = ∂H.

• For a vertex v ∈ V (H) the link LH(v) of v in H is

LH(v) = {A ∈ ∂H : A ∪ {v} ∈ H} .

• For a vertex v ∈ V (H) the neighborhood NH(v) of v in H is

NH(v) = {u ∈ V (H) \ {v} : ∃E ∈ H such that {u, v} ⊂ E} .

• The degree of a vertex v ∈ V (H) is dH(v) = |LH(v)|.

• The maximum degree and the minimum degree of H are denoted by ∆(H) and δ(H),

respectively.

• Given two r-graphs F and H let N(F,H) denote the number of (not necessarily induced)

copies of F in H.

• Given two r-graphs F and H let Nind(F,H) denote the number of induced copies of F in

H.
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• Let ρ(F,G) = N(F,H)/
(v(H)
v(F )

)
and ρind(F,G) = Nind(F,H)/

(v(H)
v(F )

)
denote the F -density

and the induced F -density of H, respectively.

• Given a family F of r-graphs we say an r-graph H is F-free if N(F,H) = 0 for all F ∈ F .

• A vertex set I ⊂ V (H) is independent if no edge of H is completely contained in I.

• The independence number α(H) is the size of the maximum independent set in H.

• The covering number τ(H) of a hypergraph H is the minimum size of a vertex S ⊂ V (H)

such that every edge has at least one vertex in S.

• A graph G is `-colorable (or `-partite) if there exists a partition V (G) = V1∪· · ·∪V` such

that Vi is independent in G for all i ∈ [`].

• The chromatic number χ(G) of a graph G is the smallest integer ` such that G is `-

colorable.

• The Turán graph T (n, `) is the complete `-partite graph on n vertices with the most

number of edges.

• The Turán r-graph Tr(n, `) is the r-graph on [n] such that every edge has at most one

vertex in Vi for i ∈ [`], where [n] = V1 ∪ · · · ∪ V` is a partition such that ||Vi| − |Vj || ≤ 1

for all i, j ∈ [`].

• The standard n-simplex ∆n is defined as

∆n =

{
x ∈ Rn+1 :

n+1∑
i=1

xi = 1 and xi ≥ 0 for all i ∈ [n+ 1]

}
.



5

• For an r-graph H on [n] define the weight polynomial of a hypergraph H as

pH(x1, . . . , xn) =
∑
E∈H

∏
i∈E

xi.

• The Lagrangian of an n-vertex r-graph H is

λ(H) = max
{
pH(x) : x ∈ ∆n−1

}
.

• The matching number ν(H) of a hypergraph H is the maximum number of disjoint edges

in H.

• For integers n ≥ k ≥ ` and t ≥ 1 an (n, k, `, t)-system is an r-graph on n vertices such

that every `-set is contained in at most t edges. We also use (n, k, `)-system to represent

an (n, k, `, 1)-system.

• For integers n ≥ k ≥ ` and t ≥ 1 a Steiner (n, k, `, t)-system is an r-graph on n vertices

such that every `-set is contained in exactly t edges. We also use Steiner (n, k, `)-system

to represent a Steiner (n, k, `, 1)-system.

• For integers k ≥ ` ≥ 0 and λ ≥ 1 the sunflower Skλ(`) is a k-graph that consists of λ edges

E1, . . . , Eλ such that Ei ∩ Ej = S for 1 ≤ i < j ≤ λ and some fixed set S (called the

center) of size `. We will omit the superscript k if it is clear from the text.

• Given two r-graphs F and H a map φ : V (F ) → V (H) is said to be a homomorphism if

it preserves edges, i.e., if φ(E) ∈ H holds for all E ∈ F . If φ is surjective and every edge
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of H is an image of an edge of F , i.e., H = {φ(E) : E ∈ F}, we call H a homomorphic

image of F .

• An r-graphH is said to be a blowup of another r-graph F if there exists a map ψ : V (H) −→

V (F ) such every E ∈
(
V (H)
r

)
satisfies the equivalence ψ(E) ∈ F ⇐⇒ E ∈ H. If ψ is sur-

jective, the blowup is called proper.

• Given two r-graphs F and H we say H is F -colorable if H is a subgraph of some blowup

of F .

• An r-graph S is a star if all edges in S contain a fixed vertex v, which is called the center

of S.

• Given two positive functions f(n) and g(n) we write f(n) = O (g(n)), or equivalently,

g(n) = Ω (f(n)) if there exists a constant C > 0 such that f(n) ≤ Cg(n) for all sufficiently

large n, we write f(n) = o (g(n)) if limn→∞ f(n)/g(n) = 0, and we write f(n) = Θ (g(n))

if both f(n) = O (g(n)) and f(n) = Ω (g(n)) hold.



CHAPTER 2

INTRODUCTION

2.1 The feasible region of hypergraphs

Let F be a family of r-graphs. The Turán number ex(n,F) of F is the maximum number

of edges in an F-free r-graph on n vertices. Using a simple averaging argument, Katona,

Nemetz, and Simonovits [133] showed that ex(n,F)/
(
n
r

)
is decreasing in n. Hence the limit

limn→∞ ex(n,F)/
(
n
r

)
exists. This limit is called the Turán density of F and is denoted by

π(F).

A fundamental theorem in Extremal graph theory due to Turán [241] is that ex(n,K`+1) =

|T (n, `)| for all integers ` ≥ 2, and moreover, the Turán graph T (n, `) is the unique K`+1-free

graph on n with ex(n,K`+1) edges. Erdős and Stone [74] extended Turán’s result and proved

that π(F ) = 1
χ(F )−1 for every graph F . Later, Simonovits [71] observed that the Erdős–Stone

theorem implies that π(F) = 1
χ(F)−1 for all graph families F , where χ(F) = min{χ(F ) : F ∈ F}.

However, on the other hand, there is comparatively little understanding of the Turán problem

for r-graphs when r ≥ 3. Determining π(F) for r-graph families with r ≥ 3 is known to be

notoriously hard in general, and it is a major open problem to determine π(Kr
` ) for any case

with ` > r ≥ 3. A long-standing conjecture of Turán states as follows.

Conjecture 2.1.1 (Turán [241]). π(K3
` ) = 1−

(
2
`−1

)2
.

7
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Despite lots of effort has been devoted to this area and successively better upper bounds for

π(K3
4 ) were obtained by de Caen [49], Giraud (see [38]), Chung and Lu [38], and Razborov [214],

Conjecture 2.1.1 still remains wide open. The current record is π(K3
4 ) ≤ 0.561666, which was

obtained by Razborov [214] using flag algebra machinery. To generate more interest in this

conjecture, it worth mentioning that Erdős [62] offered $500 for the solution of Conjecture 2.1.1

for any case and $1000 for a general solution. For more results on hypergraph Turán problems

before 2011 we refer the reader to an excellent survey by Keevash [135].

To gain a better understanding of hypergraph Turán problems. We combine it with the

Kruskal–Katona [154; 132] theorem, another seminal result in Combinatorics, which gives a

tight upper bound for |H| as a function of |∂H|. More specifically, in Chapter 3, we consider

the following more general question.

If H is F-free, what are the possible values of |H| for fixed |∂H|?

We are interested in the asymptotical solution to the question above. This motivates us to

study the feasible region Ω(F) of r-graph families F , which is the set of points (x, y) in the unit

square such that there exists a sequence of F-free r-graphs whose shadow densities approach x

and whose edge densities approach y.

The feasible region provides a lot of combinatorial information, for example, the supremum

of y over all (x, y) ∈ Ω(F) is the Turán density π(F), and Ω(∅) gives the Kruskal–Katona

theorem.
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We undertake a systematic study of Ω(F), and prove that Ω(F) is completely determined by

a left-continuous almost everywhere differentiable function g(F); and moreover, there exists a

finite family F for which g(F) is not continuous. We show that for a finite family F the function

g(F) can have arbitrarily finitely many global maxima and countably many local maxima. We

also extend some old theorems about various hypergraph Turán problems. For example, we

completely determine the feasible region of the weak expansion of complete graphs and almost

completely determine the feasible region for cancellative triple systems.

2.2 Hypergraph stability

Many families F have the property that there is a unique F-free hypergraph G on n vertices

achieving ex(n,F), and moreover, every F-free hypergraph H of size close to ex(n,F) can be

transformed to G by deleting and adding very few edges. Such a property is called stability of

F . The first stability theorem was proved independently by Erdős and Simonovits [233], which

shows that if the number of edges in an n-vertex K`-free graph G is (1 − o(1))ex(n,K`), then

G can be transformed to the Turán graph T (n, `− 1) by deleting and adding o(n2) edges.

The stability phenomenon has been used to determine ex(n,F) exactly in many cases. It

was first used by Simonovits in [233] to determine ex(n, F ) exactly for all edge-critical graphs

F and large n, and then by several authors (e.g. see [113; 141; 142; 195; 209; 30; 205]) to prove

exact results for hypergraphs.

However, there are many Turán problems for hypergraphs that (perhaps) do not have the

stability property. The famous example K3
4 we mentioned above was shown to have exponen-

tially many extremal constructions in the number of vertices (e.g. see Kostochka [151] and
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Brown [32]). These constructions can be used to show that K3
4 does not have the stability

property (assuming Turán’s tetrahedron conjecture is true). For K3
` with ` ≥ 5, different near-

extremal constructions were given by Sidorenko [228], and Keevash and Mubayi [135]. These

also show that K3
` does not have stability (assuming Conjecture 2.1.1 is true).

The absence of stability seems to be a fundamental barrier in determining the Turán numbers

of some families. Indeed, the Turán numbers of the examples we presented above are not known,

even asymptotically, and in fact, no Turán number of a family without the stability property

has been determined.

In Chapter 5, we provide the first such example. More specifically, we construct a family

M of 3-graphs, prove that M has exactly two different extremal configurations, and hence,

does not have the stability property, We also determine π(M), and even ex(n,M) for infinitely

many n.

Further, using some results from Design theory, for every positive integer t we construct a

finite family of triple systemsMt, determine its Turán number, and show that there are exactly

t extremal Mt-free configurations that are far from each other in edit-distance.

We also prove a strong stability theorem: every Mt-free triple system whose size is close

to the maximum size is a subgraph of one of these t extremal configurations after removing a

small proportion of vertices. This is the first stability theorem for a hypergraph problem with

an arbitrary (finite) number of extremal configurations. Moreover, the extremal hypergraphs

have very different shadow sizes (unlike the case of the famous Turán tetrahedron conjecture).



11

Hence a corollary of our result is that the function g(Mt) has exactly t global maxima. We

also extend the construction to the general case of r ≥ 4.

To prove the stability theorem above, in Chapter 4, we develop a method which provides a

unified framework for most stability theorems that have been proved in graph and hypergraph

theory. Our main result reduces stability for a large class of hypergraph problems to the simpler

question of checking that a hypergraph H with large minimum degree that omits the forbidden

structures is vertex-extendable. This means that if v is a vertex of H and H− v is a subgraph

of the extremal configuration(s), then H is also a subgraph of the extremal configuration(s). In

many cases vertex-extendability is quite easy to verify.

We illustrate our approach by giving new short proofs of hypergraph stability results of

Pikhurko [208], Hefetz–Keevash [122], Brandt–Irwin–Jiang [30], Bene Watts–Norin–Yepremyan [17]

and others. Since our method always yields minimum degree stability, which is the strongest

form of stability, in some of these cases our stability results are stronger than what was known

earlier. Along the way, we clarify the different notions of stability that have been previously

studied.

2.3 Extremal set theory

Many problems in Extremal set theory can be viewed as Turán-type problems, but these

problems usually have very simple extremal constructions. We call a family H a star if every

edge in it contains a fixed vertex, which is called the center ofH. A family is intersecting if every

pair of edges in it has a nonempty intersection. The celebrated Erdős–Ko–Rado theorem [69]

states that if n ≥ 2r and H ⊂
(

[n]
r

)
is an intersecting family, then |H| ≤

(
n−1
r−1

)
. Moreover,
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equality holds only if H is a star when n > 2r. There has been many extensions of the Erdős–

Ko–Rado theorem since it was proved. One extension that was proposed by Mubayi [190] is as

follows.

A collection of d different r-sets A1, . . . , Ad is called a d-cluster if |A1 ∪ · · · ∪ Ad| ≤ 2r

and |A1 ∩ · · · ∩ Ad| = 0. A family F ⊂
(

[n]
r

)
is d-cluster-free if it does not contain d-clusters.

Notice that an intersecting family is simply a 2-cluster-free family. Mubayi [190] conjectured

that for every n ≥ dr/(d − 1) with r ≥ d ≥ 3 every d-cluster-free family H ⊂
(

[n]
r

)
has

size at most
(
n−1
r−1

)
. Moreover, equality holds only if H is a star. Mammoliti and Britz [185]

considered Mubayi’s conjecture for a special kind of families, and they proposed the problem

of determining the maximum size of an n-vertex d-cluster-free set with at least two disjoint

edges. They conjectured that the extremal construction should be the disjoint union of a star

and an edge. In Section 6.1, we show that their conjecture is true for r = 3 but false for r ≥ 4.

Moreover, we provide the correct bounds for the case r ≥ 4, and show that they are related to

the Hypergraph Turán problems that allow multiple edges.

A more general problem is to consider the so-called conditionally intersecting families. We

say a family H ⊂
(

[n]
r

)
is (d, s)-conditionally intersecting if it does not contain d sets with

union of size at most s and empty intersection. In particular, a family H ⊂
(

[n]
r

)
is (d, 2r)-

conditionally intersecting if it does not contain d-clusters. In [95], Frankl studied the structure

of (3, 6)-conditionally intersecting families and used it to give a new proof of the Erdős–Ko–Rado

theorem for 3-graphs. In Section 6.2, we extended his result to (d, s)-conditionally intersecting

families with s ≥ 2r + d − 3 and (r, 2r)-conditionally intersecting families, and use them to
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give new proofs to some classical theorems in Extremal set theory and the Mammoliti–Britz

conjecture mentioned above for r = 3.

A triangle is a family of three sets A,B,C such that A∩B,B ∩C,C ∩A are nonempty but

A∩B∩C is empty. Settling a longstanding conjecture of Erdős [77], Mubayi and Verstraëte [198]

proved that for r ≥ 3 and n ≥ 3r/2 every triangle-free family H ⊂
(

[n]
r

)
has size at most

(
n−1
r−1

)
,

and moreover, equality holds only if H is a star. Let us call a hypergraph H ⊂
(

[n]
r

)
non-trivial

intersecting if every two edges in it have a nonempty intersection but no vertex is contained in

all edges of H. In fact, Mubayi and Verstraëte proved a stronger statement which says that for

every r ≥ d+1 ≥ 3 and n ≥ (d+1)r/d every family H ⊂
(

[n]
r

)
without a non-trivial intersecting

subgraph of size d + 1 has at most
(
n−1
r−1

)
edges. They conjectured that a similar result holds

even for d ≥ r ≥ 4 when n is sufficiently large. We prove their conjecture in Section 6.4.

For r = 3, Mubayi and Verstraëte observed that a Steiner (n, 3, 2, k − 1)-system does not

contain a non-trivial intersecting family of size 3k+ 1 whenever k ≥ 2. Hence they conjectured

that for k ≥ 2 and sufficiently large n the 3-graph H ⊂
(

[n]
3

)
that does not contain a non-

trivial intersecting family of size 3k+ 1 and with the most number of edges should be a Steiner

(n, 3, k − 1)-system (if there is such a Steiner (n, 3, 2, k − 1)-system). In Section 6.4, we show

this conjecture is false.

As we mentioned before, the seminal Kruskal–Katone theorem gives a tight upper bound

for |H| as a function of |∂H|. This theorem was extended to many families with additional

properties. One such central result is due to Katona [131] who proved the following theorem
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for t-intersecting families, which are families in which every two sets have at least t common

elements.

Theorem 2.3.1 (Katona [131]). Let n ≥ k > t ≥ ` ≥ 1. If H ⊂
([n]
k

)
is t-intersecting, then

|∂`H| ≥
(

2k−t
k−`
)(

2k−t
k

) |H|.
The only case of equality in Theorem 2.3.1 is when n = 2k − t and H ∼=

([2k−t]
k

)
(see [1]).

Theorem 2.3.1 is a foundational result in extremal set theory with many applications. Its

first application was to prove a conjecture of Erdős–Ko–Rado on the maximum size of a t-

intersecting family in 2[n]. It was used to obtain short new proofs for several classical results.

For example, Frankl–Füredi [103] used it to give a short proof for the Erdős–Ko–Rado theorem,

and Frankl–Tokushige [106] used it to obtain a short proof for the Hilton–Milner theorem. It

also has many applications to Sperner families and other types of intersection problems [28; 42;

98; 100; 116; 185; 224; 250].

Section 6.3 is concerned with improving the bounds in Theorem 6.3.2 and related results

about shadows of families with certain properties. Our proofs use some structural results about

t-intersecting families and in many cases the bounds we proved are best possible.

2.4 Extension of Turán’s theorem

Before the celebrated Turán theorem was proved, Mantel [186] showed that every graph on

n vertices with
⌊
n2/4

⌋
+ 1 edges contains at least one copy of K3. Rademacher showed that

there are actually at least bn/2c copies of K3 in such graphs. Later, Erdős [56; ?] proved that
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if t ≤ cn for some small constant c > 0, then every graph on n vertices with
⌊
n2/4

⌋
+ t edges

contains at least t bn/2c copies of K3. Erdős also conjectured that the same conclusion holds for

all t < n/2. Later, Lovász and Simonovits [178] proved Erdős’ conjecture and they also proved

a similar result for Kr with r ≥ 4. In [194], Mubayi extended their results by proving tight

bounds on the number of copies of color critical graphs in a graph with a prescribed number of

vertices and edges.

Xiao and Katona [249] proposed a generalized Erdős–Rademacher problem by putting con-

straints on τF (G). More precisely, they asked for the minimum value of N(F,G) for graphs G

with a fixed number of vertices and edges and a fixed F -covering number which is the minimum

size of S ⊂ V (G) such that every copy of F in G has at least one vertex in S.

In Section 7.2, we show the correct bound on the number of copies of K3 for all s, t and

sufficiently large n, and also prove several bounds, which is tight up to some error term, on

the number of copies of Kr and r-critical graphs F in a graph G on n vertices with tr−1(n) + t

edges and τr(G) = s.

In Section 7.1, we consider the following generalization of Turán’s theorem that was ini-

tialized by Erdős [61]: Given a constant 0 ≤ α ≤ 1, what is the minimum value β = β(α, r)

such that every n-vertex Kr-free graph contains a vertex set of size bαnc which spans at most

βn2 edges? This is often referred as the local density problem. The case α = 1/2 is of special

interest. Erdős [63] offered $250 for the first solution to the following long-standing conjecture

on triangle-free graphs.
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Conjecture 2.4.1 (Erdős [61]). Every triangle-free graph on n vertices contains a vertex set

of size bn/2c that spans at most n2/50 edges.

The balanced blow-ups of both the 5-cycle and the Petersen graph show that the bound

n2/50 would be best possible if this conjecture is true. Despite extensive research [153; 143;

203; 15], Conjecture 2.4.1 is still open.

A similar question also has been asked for K4-free graphs. Chung and Graham [40], and

Erdős, Faudree, Rousseau and Schelp [65] posted the following conjecture.

Conjecture 2.4.2 (Chung et al. [40], Erdős et al. [65]). Every K4-free graph on n vertices

contains a vertex set of size bn/2c that spans at most n2/18 edges.

The Turán graph T3(n) shows that the bound n2/18 in Conjecture 2.4.2 would be best

possible if it is true. A closely related conjecture of Erdős (see [64]), which was proved by

Sudakov [237], states that every K4-free graphs on n vertices can be made bipartite by deleting

at most n2/9 edges. An interesting interplay between these problems for regular graphs was

observed by Krivelevich [153], where he pointed out that a bound in the local density problem

can imply a bound (doubled) in the problem of making a graph bipartite; also see [237] for an

illustration.

In Section 7.1, we prove Conjecture 2.4.2 for almost-regular graphs. It is worth mentioning

that utilizing some of our results and some ideas from the Ramsey–Turán theory, Reiher [218]

completely resolved this conjecture very recently.
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2.5 The feasible region of induced graphs

A quantum graphQ is a formal linear combination of finitely many graphs, i.e., an expression

of the form

Q =

m∑
i=1

λiFi ,

where m is a nonnegative integer, the numbers λ1, . . . , λm are real, and F1, . . . , Fm are graphs.

We call Fi a constituent of Q if λi 6= 0. Two quantum graphs Q, Q′ are equal if they have the

same constituents and the same (nonzero) coefficients for each constituent. The complement

of Q is Q =
∑m

i=1 λiF i, where F i denotes the complement of Fi for each i ∈ [m]. A quantum

graph Q is self-complementary if Q = Q. Every graph parameter f can be extended linearly to

quantum graphs by stipulating f(Q) =
∑m

i=1 λif(Fi). In particular,

N(Q,G) =

m∑
i=1

λiN(Fi, G) and ρ(Q,G) =

m∑
i=1

λiρ(Fi, G) .

The feasible region Ωind(Q) of a quantum graph Q is the collection of points (x, y) in the

unit square such that there exists a sequence of graphs whose edge densities approach x and

whose induced Q-densities approach y.

For single graphs, a complete description of Ωind(F ) is not known for any F with at least

four vertices that is not a clique or an independent set (see [216; 201; 217]). The feasible region

provides a lot of combinatorial information about F . For example, Ωind(Kr) yields the Kruskal–
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Katona [154; 132] and clique density theorems, and the supremum of y over all (x, y) ∈ Ωind(F )

is the inducibility of F , which is defined as

ind(F ) = lim
n→∞

max {ρ(F,G) : v(G) = n} .

In Chapter 8, we begin a systematic study of Ωind(Q). We prove some general results

about the shape of Ωind(Q). Our main result here shows that Ωind(Q) is a closed set and

is completely determined by two continuous and almost everywhere differentiable functions

I(Q, x) and i(Q, x). We also study Ωind(F ) for some specific choices of graphs F for which

ind(F ) has been investigated by many researchers. We prove a general upper bound for I(F, x)

where F are complete multipartite graphs, this generalizes an old result of Bollobás [25] for

the number of cliques in a graph with given edge density. Prior to our work, Ωind(F ) for a

single graph F was determined only when F is a clique or an independent set. Here we extend

this to the case F = K1,2 and also obtain results for complete bipartite graphs. Furthermore

we study Ωind(K−r ), where K−r arises from the clique Kr by the deletion of a single edge. As

a consequence of our results, we determine the inducibility ind(K−r ), which is new for r ≥ 5.

Our results sharpen those predicted by the edge-statistics conjecture of Alon et. al. while also

extending a theorem of Hirst [124] for K−4 that was proved using computer aided techniques

and flag algebras.
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2.6 Independent sets in sparse hypergraphs

A central topic in Combinatorics is to study the independence number of various family

of hypergraphs. The celebrated Turán theorem [241] implies that α(G) ≥ n/(d + 1) for every

graph G on n vertices with average degree d. Later, Spencer [234] extended Turán’s result and

proved that for all k ≥ 3 every n-vertex k-graph H with average degree d satisfies

α(H) ≥ ck
n

d1/(k−1)
(2.1)

for some constant ck > 0.

The bound for α(H) can be improved if we forbid some family F of hypergraphs in H. For

` ≥ 2 a (Berge) cycle of length ` in H is a collection of ` distinct edges E1, . . . , E` ∈ H such that

there exists ` distinct vertices v1, . . . , v` with vi ∈ Ei ∩Ei+1 for i ∈ [`− 1] and v` ∈ E` ∩E1. A

seminal result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [4] states that for every n-vertex

k-graph H with average degree d that contains no cycles of length in {2, 3, 4}, there exists a

constant c′k > 0 such that

α(H) ≥ c′k
n

d1/(k−1)
(log d)1/(k−1). (2.2)

Moreover, this is tight apart from c′k.

Spencer [200] conjectured and Duke, Lefmann, and Rödl [53] proved that the same conclu-

sion holds even if H just contains no cycles of length 2. Their result was further extended by

Rödl and Šiňajová [222] to the larger family of (n, k, `)-systems.
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Closely related to the (n, k, `)-systems is a family called (n, k, `)-omitting systems, where a

family H ⊂
([n]
k

)
is an (n, k, `)-omitting system if |A∩B| 6= ` for every pair of edges {A,B} ⊂ H.

One important difference between (n, k, `)-systems and (n, k, `)-omitting systems is their

maximum sizes. By definition, every set of ` vertices in an (n, k, `)-system is contained in at

most one edge, thus every (n, k, `)-system has size at most
(
n
`

)
/
(
k
`

)
= O

(
n`
)
. However, this is

not true for (n, k, `)-omitting systems. Indeed, the following result of Frankl and Füredi [99]

shows that the maximum size of an (n, k, `)-omitting system can be much larger than that of

an (n, k, `)-system when k > 2`+ 1.

Let k > ` ≥ 1 and λ ≥ 1 be integers. Observe that an n-vertex k-graph is an (n, k, `)-

omitting system iff it is S2(`)-free, and is an (n, k, `)-system iff it is {S2(`), . . . , S2(k− 1)}-free.

Theorem 2.6.1 (Frankl–Füredi [99]). Let k > ` ≥ 1 and λ > 1 be fixed integers and H be an

Sλ(`)-free k-graph on n vertices. Then |H| = O
(
nmax{`,k−`−1}). Moreover, the bound is tight

up to a constant multiplicative factor.

In Chapter 9, we study the independence number of (n, k, `)-omitting systems. Our results

for (n, k, `)-omitting systems are divided into two parts. For k ≤ 2` + 1, we believe that the

behavior is similar to that of (n, k, `)-systems and prove a nontrivial lower bound for the first

open case ` = k − 2. For k > 2`+ 1 we give new lower and upper bounds which show that the

minimum independence number of (n, k, `)-omitting systems has a very different behavior than

for (n, k, `)-systems.

Explicit constructions of (n, r, s)-systems with certain properties are very useful in theoret-

ical computer science. For example, in the seminal work of Nisan and Wigderson [202], dense
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(n, r, s)-systems are used to construct pseudorandom generators (PRGs) (see also [240; 213]

for more applications). More recently, explicit constructions of (n, r, s)-systems with small

independence number were used to construct extractors for adversarial sources [36; 35].

Rödl and Šiňajová’s proof of the existence of an (n, r, s)-system with small independence

number uses the Lovász local lemma, and hence it does not provide an explicit way to construct

them. Perhaps the first explicit construction of an (n, 3, 2)-system (also called a Steiner triple

system) with independence number O(n1−ε) for some absolute constant ε > 0 is due to Chat-

topadhyay, Goodman, Goyal, and Li [36]. Their proof uses results about cap sets (see [45; 55]).

Theorem 2.6.2 (Chattopadhyay–Goodman–Goyal–Li [36]). There exists a constant C ≥ 1

such that for every integer n ≥ 3 there exists an explicit construction of an (n, 3, 2)-system with

independence number at most Cn0.9228.

Later, using results about linear codes [125; 29] and Sidorenko’s recent bounds on the size of

sets in Zn2 containing no r elements that sum to zero [229; 230], Chattopadhyay and Goodman

[35] extended Theorem 2.6.2 to all integers r > s ≥ 2 with s ≥ dr/2e.

Theorem 2.6.3 (Chattopadhyay–Goodman [35]). There exists a constant C ≥ 1 such that for

every integer s ≥ 2 and every even integer r > s there exists an explicit construction of an

(n, r, s)-system with independence number at most Cr4n
2(r−s)
r .

For odd r they showed that there exists an explicit construction of an (n, r, s)-system with

independence number at most C(r + 1)4n
2(r+1−s)
r+1 .
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Our main results on this topic extend Theorem 2.6.2 for certain values of r and s in the

range s < dr/2e which was not addressed by Theorem 2.6.3.



CHAPTER 3

THE FEASIBLE REGION OF HYPERGRAPHS
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3.1 Introduction

In this chapter we consider the following question which combines the classical Kruskal–

Katona [154; 132] Theorem and the hypergraphs Turán problem.

If H is F-free, what are the possible values of |H| for fixed |∂H|? (∗)

Note that for the case F = ∅ the solution to problem (∗) is exactly the Kruskal–Katona

Theorem. For the sake of simplicity we state the following technically simpler version due to

Lovász.

Theorem 3.1.1 (see Lovász [175]). Let H be an r-graph, and suppose that |∂H| =
(
z
r−1

)
for

some real number z ≥ r. Then |H| ≤
(
z
r

)
.

If F 6= ∅, then (∗) is closely related to the hypergraph Turán problem. In fact, ex(n,F)

gives a universal upper bound for |H| no matter what |∂H| is, and it is tight for some (at least

one) values of |∂H|. However, the upper bound given by ex(n,F) gives us a rather limited

picture of the relationship between the shadow and size of an F-free hypergraph. Our objective

in this chapter is to provide a much more detailed view of this relationship.

An analogous question has been studied extensively in extremal graph theory. For fixed

graphs H1 and H2 and (large) graph G, the following problem is a cornerstone of extremal

graph theory:

What are the possible values of ρ(H2;G) if ρ(H1;G) is fixed? (?)



25

Even for (H1, H2) = (K2,Kt) with t ≥ 3, question (?) is known to be highly nontrivial and was

asymptotically solved for t = 3 by Razborov [216], t = 4 by Nikiforov [201], and for all t only

recently by Reiher [217]. We refer the reader to [178; 25; 215] for the history of (?).

The main difficulty in (?) is to determine the lower bound for ρ(H2;G). However, it will be

shown later that the main difficulty in (∗) is to determine the upper bound for |H|. In order to

state our results formally we need some definitions.

Definition 3.1.2 (Feasible region of hypergraphs). Fix r ≥ 3.

(a) Given an r-graph H, its edge density is d(H) = |H|/
(
v(H)
r

)
and its shadow density is

d(∂H) = |∂H|/
(
v(H)
r−1

)
.

(b) An r-graph sequence (Hk)∞k=1 is good if v(Hk) → ∞ as k → ∞ and both limk→∞ d(Hk)

and limk→∞ d(∂Hk) exist.

(c) Let (Hk)∞k=1 be a good sequence of F-free r-graphs, and (x, y) ∈ [0, 1]2. Then (Hk)∞k=1

realizes (x, y) if limk→∞ d(∂Hk) = x and limk→∞ d(Hk) = y.

(d) The feasible region Ω(F) of F is the collection of all points (x, y) ∈ [0, 1]2 that can be

realized by a good sequence of F-free r-graphs.

As mentioned earlier, the upper bound given by ex(n,F) gives us a rather limited picture

of Ω(F), since it only determines

sup{y : ∃x ∈ [0, 1] such that (x, y) ∈ Ω(F)}.

As indicated by (∗), we study Ω(F). Our results are of three flavors.



26

• We prove some general results about the shape of Ω(F). Our main results here are The-

orems 3.1.11 and 3.1.12 which state that the boundary of Ω(F) is completely determined

by a left-continuous almost everywhere differentiable function g(F) with at most count-

ably many jump discontinuities, and give examples showing that g(F) can indeed be

discontinuous.

• We study Ω(F) for some specific choices of F for which ex(n,F) has been investigated

by many researchers. We focus on two specific families: cancellative hypergraphs and

hypergraphs without expansions of cliques. Our results, which go beyond determining

just the Turán density, are summarized in Corollaries 3.1.18 and 3.1.22 (see Figure 6

and Figure 7).

• We analyze the structure of F-free hypergraphs H whose shadow density and edge density

are close to the boundary of Ω(F) for cancellative hypergraphs (Theorem 3.1.26) and

hypergraphs without expansions of cliques, which extends the classical stability theorems

proved for F-free hypergraphs. In particular, for cancellative 3-graphs we prove a stability

theorem that connects Steiner triple systems with cancellative 3-graphs, and moreover,

using this stability theorem we show that the function g(F) for cancellative 3-graphs has

countably many local minima (Theorem 3.1.28).

Regarding our results on the shape of Ω(F), there are (at least) two previous works of

a similar flavor: Razborov [216] determined the closure of the set of points defined by the

homomorphism density of the edge and the triangle in finite graphs (and showed that the

boundary is almost everywhere differentiable) and Hatami–Norine [120] constructed examples
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which show that the restrictions of the boundary to certain hyperplanes of the region defined

by the homomorphism densities of a list of given graphs can have nowhere differentiable parts.

Our work can be viewed as a continuation of a long line of research in asymptotic extremal

combinatorics perhaps beginning with the seminal work of Erdős–Lovász–Spencer [70] and

continuing today in different guises such as the graph limits paradigm of Lovász [177] or the

method of Flag algebras of Razborov [215].

3.1.1 General results about Ω(F)

In this section we state some general results about feasible regions.

Proposition 3.1.3. The region Ω(F) is closed for all r ≥ 3 and all (possibly infinite) families

F of r-graphs.

Definition 3.1.4 (Projection of the feasible region). The projection of Ω(F) on the x-axis is

projΩ(F) = {x : ∃y ∈ [0, 1] such that (x, y) ∈ Ω(F)} .

Note that it is not necessarily true that projΩ(F) = [0, 1] in general. Later we will present

an example of F , which shows projΩ(F) = [0, (`)r−1/`
r−1] for ` ≥ 3. On the other hand, by

removing edges one by one from H one can reduce the edge density of ∂H continuously (in the

limit sense) to 0. This yields the following observation.

Observation 3.1.5. For every family F of r-graphs with r ≥ 3 there exists ĉ ∈ [0, 1] such that

projΩ(F) = [0, ĉ].

Proposition 3.1.3 enables us to define the following function.
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Definition 3.1.6 (Boundary of the feasible region). Given a family F of r-graphs with r ≥ 3,

let g(F) : projΩ(F)→ [0, 1] be defined by

g(F)(x) = max {y : (x, y) ∈ Ω(F)} ,

for all x ∈ projΩ(F).

Here we abuse notation by writing g(F , x) for g(F)(x). Our next result shows that Ω(F) is

determined by projΩ(F) and g(F).

Proposition 3.1.7. Let r ≥ 3 and let F be a family of r-graphs. If (x0, y0) ∈ Ω(F), then

(x0, y) ∈ Ω(F) for all y ∈ [0, y0].

Combining the Kruskal–Katona theorem with some further observations yields the following

universal upper bound for g(F , x).

Proposition 3.1.8. Let r ≥ 3 and F be a family of r-graphs. Then g(F , x) ≤ xr/(r−1) for

all x ∈ projΩ(F) (see Figure 1). In particular, projΩ(∅) = [0, 1] and g(∅, x) = xr/(r−1) for all

x ∈ [0, 1].

In [120], Hatami and Norin considered the region defined by the homomorphism densities

of a list of given graphs, which is a more general version of (?) (that generalizes (?) from two

graphs H1, H2 to more graphs). They constructed examples which show that the restrictions

of the boundary to certain hyperplanes can have nowhere differential parts. However, we will

show in the next result that g(F) is well-behaved.
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Figure 1. Upper bounds for g(F , x) when r = 3, 4, 5.

Definition 3.1.9 (Left/right continuity). Let f : R → R. Then f is left-continuous (resp.

right-continuous) at x if for any ε > 0 there exists δ > 0 such that |f(x′) − f(x)| < ε for all

x′ ∈ (x − δ, x) (resp. |f(x′) − f(x)| < ε for all x′ ∈ (x, x + δ)). If f is left-continuous (resp.

right-continuous) at all x ∈ R, then we say f is left-continuous (resp. right-continuous).

Definition 3.1.10 (Types of discontinuities). Let f : R → R and x ∈ R be a discontinuity

of f . If limx→x− f(x) and limx→x+ f(x) exist, then f is said to have the discontinuity of the

first kind at x. Otherwise, the discontinuity is said to be of the second kind. Furthermore,

suppose that x is a discontinuity of the first kind of f . Then x is a removable discontinuity if

limx→x− f(x) = limx→x+ f(x). Otherwise, x is a jump discontinuity.

Theorem 3.1.11. For any r ≥ 3 and any family F of r-graphs, g(F) is left-continuous, has

at most countably many jump discontinuities, and is almost everywhere differentiable.
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Furthermore, the next result shows that g(F) can indeed be discontinuous.

Theorem 3.1.12. There exists a family D of 3-graphs with projΩ(D) = [0, 1] and g(D, 2/3) =

2/9, but there exists an absolute constant δ0 > 0 such that g(D, 2/3 + ε) < 2/9 − δ0 for all

ε ∈ (0, 10−8).

Actually, Theorem 3.1.12 can be extended to r ≥ 4, and the condition that ε < 10−8 is

not necessary (for all r ≥ 3). The proof for these extensions can be found in the arXiv version

of [167].

2
3 10

2/9

1/2

y

x

Figure 2. The function g(D) is discontinuous at x = 2/3.
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3.1.2 Cancellative hypergraphs

In this section we consider the feasible region of cancellative hypergraphs, which is perhaps

the first example of an extremal hypergraph problem that was well understood. Our results

are summarized in Corollary 3.1.18 stated at the end of this section.

Definition 3.1.13. Let Tr be the collection of all r-graphs on at most 2r − 1 vertices with 3

edges A,B,C such that A4B ⊂ C. An r-graph is cancellative iff it is Tr-free.

For r = 2 the family T2 comprises only one graph K3. For r = 3 the family T3 comprises

two hypergraphs K3−
4 and F5, where K3−

4 is the 3-graph on 4 vertices with exactly 3 edges,

and F5 is the 3-graph on 5 vertices with edge set {123, 124, 345}. Let

tr(n, `) = |Tr(n, `)| ≈
(
`

r

)(n
`

)r

denote the size of the Turán r-graph Tr(n, `). Motivated by Mantel’s theorem, in the 1960’s,

Katona raised the question of determining the maximum size of a T3-free 3-graph and con-

jectured that the maximum size of a cancellative 3-graph is achieved by T3(n, 3). Katona’s

conjectured was proved by Bollobás in [24].

Theorem 3.1.14 (Bollobás [24]). A T3-free 3-graph on n vertices has at most t3(n, 3) edges.

Moreover, T3(n, 3) is the unique extremal construction.

Consequently, g(T3, x) ≤ 2/9 for all x ∈ projΩ(T3). Later, Keevash and Mubayi [139] proved

a stability theorem for T3-free hypergraphs.
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Theorem 3.1.15 (Stability; Keevash–Mubayi [139]). For every δ > 0 there exists ε > 0 and

n0 such that the following holds for all n ≥ n0. Every n-vertex T3-free 3-graph H with at least

(1 − ε)t3(n, 3) edges has a partition of its vertex set as V1 ∪ V2 ∪ V3 such that all but at most

δn3 edges of H has one vertex in each Vi.

In Section 3.2 we will present a new short proof to both the exact and the stability result for

T3-free 3-graphs. In fact, our proof not only gives the exact value of ex(n, T3) but also shows a

relation between |∂H| and |H| for a T3-free 3-graph H on n-vertices. More specifically, it shows

that

4

(
3|H|/|∂H|

n− 3|H|/|∂H|

)2

|∂H| ≤ n2 − 2|∂H|, (3.1)

and it follows that (see Figure 3)

g(T3, x) ≤
√

2(1− x)x3 + x2 − x
3x− 1

, for all x ∈ projΩ(T3). (3.2)

This serves as a motivation for us to study the feasible region of hypergraphs.

Our next result concerns cancellative r-graphs for r ≥ 3, and improves the bound in Propo-

sition 3.1.8 as well as that in Equation 3.2 for x ∈ [0, 2/3].

Theorem 3.1.16. Let r ≥ 3 and x ∈ projΩ(Tr). Then

g(Tr, x) ≤
(
xr

r!

) 1
r−1

.

Moreover, equality holds for all x ∈ [0, (r − 1)!/rr−2] (see Figure 4).
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Figure 3. Ω(T3) is contained in the dark area above.
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Figure 4. Upper bounds for g(Tr, x) when r = 3, 4.
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For r = 3, the bound given by Theorem 3.1.16 is not tight for any x ∈ (2/3, 1] according

to Bollobás’ theorem [24]. Our next result will present an improved bound for g(T3, x) for

x ∈ (2/3, 1].

Theorem 3.1.17. The inequality g(T3, x) ≤ x(1 − x) holds for all x ∈ [0, 1]. Moreover,

g(T3, (k − 1)/k) = (k − 1)/k2 when k ≡ 1 or 3 (mod 6) (see Figure 5).

Christian Reiher observed that the function x(1− x) in Theorem 3.1.17 can be replaced by

a piecewise linear function that always lies below x(1−x) (see Section ? for details). The lower

bound for g(T3, (k−1)/k) when k ≡ 1 or 3 (mod 6) comes from the balanced blow up of Steiner

triple systems on k vertices, this will be explained in more detail in Section ?. Combining

2
3

6
7

8
9 10

2/9

1/2

6/49
9/81

x

y

Figure 5. Ω(T3) is contained in the dark area.

Theorems 3.1.16 and 3.1.17 yields the following result for g(T3, x), which provides a rather

comprehensive picture of Ω(T3) (see Figure 6).
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Figure 6. Ω(T3) is contained in the dark area.

Corollary 3.1.18. We have g(T3, x) = x3/2/
√

6 for all x ∈ [0, 2/3], and g(T3, x) ≤ x(1 − x)

for all x ∈ (2/3, 1]. Moreover, g(T3, (k− 1)/k) = (k− 1)/k2 for all integers k ≡ 1 or 3 (mod 6).

3.1.3 Hypergraphs without an expansion of a large clique

In this section we consider the feasible region of hypergraphs without expansion of cliques.

These hypergraphs were introduced by Mubayi in [191] as a way to generalize Turán’s theorem

to hypergraphs. Another reason for their importance is that they provide the first (and still the

only) explicitly defined examples which yield an infinite family of numbers realizable as Turán

densities for hypergraphs.

Let Kr`+1 be the collection of all r-graphs F with at most
(
`+1

2

)
edges such that for some

(`+ 1)-set S, which will be called the core of F , every pair {u, v} ⊂ S is covered by an edge in

F . Let the r-graph Hr
`+1 be obtained from the complete graph K` by adding r− 2 new vertices

into each edge. The graph Hr
`+1 is called the expansion of K`. It is an easy observation that

Hr
`+1 ∈ Kr`+1.
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Mubayi introduced the notion of Kr`+1 and Hr
`+1 in [191] and proved both the exact and

stability results for Kr`+1-free r-graphs.

Theorem 3.1.19 (Mubayi [191]). Let n ≥ 1 and ` ≥ r ≥ 2 be integers. Then ex(n,K(r)
`+1) =

tr(n, `). Moreover, Tr(n, `) is the unique extremal construction on n vertices.

Theorem 3.1.20 (Stability; Mubayi [191]). Fix ` ≥ r ≥ 2. For every δ > 0 there exists an

ε > 0 and an n0 such that the following holds for all n ≥ n0. Let H be an n-vertex Kr`+1-free

r-graph with at least (1− ε)tr(n, `) edges. Then the vertex set of H has a partition V1 ∪ · · · ∪ V`

such that all but at most δnr edges in H have at most one vertex in each Vi.

In [208], Pikhurko improved the result in [191] and proved that if n is sufficiently large then

ex(n,Hr
`+1) = tr(n, `) and Tr(n, `) is the unique Hr

`+1-free r-graph on n vertices with exactly

tr(n, `) edges.

In order to state our result, we need to extend the definition of shadows. Let H be an

r-graph and S ⊂ V (H). For i ≤ 0 we extend the definition of the i-th shadow ∂iH as follows:

∂iH =

{
A ∈

(
V (H)

r − i

)
: H[A] is a complete r-graph

}
. (3.3)

In particular, ∂1H = ∂H and ∂0H = H. By definition, ∂i+1H = ∂ (∂iH) for all 0 ≤ i ≤ r − 2,

and ∂ (∂iH) ⊂ ∂i+1H for all i ≤ −1.

Our first result here relates the sizes of different shadows of a Kr`+1-free r-graph H. This

generalizes an important result of Fisher and Ryan [83] from graphs to hypergraphs.
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Theorem 3.1.21. Let ` ≥ r ≥ 2 and H be a Kr`+1-free r-graph. Then

(
|∂r−`H|(

`
`

) ) 1
`

≤ · · · ≤

(
|∂−1H|(

`
r+1

) ) 1
r+1

≤

(
|H|(
`
r

)) 1
r

≤

(
|∂1H|(

`
r−1

)) 1
r−1

≤ · · · ≤

(
|∂r−1H|(

`
1

) ) 1
1

.

Using Theorem 3.1.21 we are able to determine g(Kr`+1) completely via the following result.

We will use (`)r to denote `(`− 1) · · · (`− r + 1).

Corollary 3.1.22. Let ` ≥ r ≥ 3. Then projΩ(Kr`+1) = [0, (`)r−1/`
r−1] and

g(Kr`+1, x) = (`− r + 1)

(
xr

(`)r

) 1
r−1

for all x ∈ [0, (`)r−1/`
r−1] (see Figure 7).

2
3 10

2/9

1/2

(a) ` = 3, r = 3.

3
8

0

3/32

10

1/2

(b) ` = 4, r = 4.

Figure 7. The region Ω(Kr`+1) for (`, r) = (3, 3) and (`, r) = (4, 4).
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Determining Ω(Hr
`+1) is much more difficult than determining Ω(Kr`+1) because the shadow

density of an Hr
`+1-free r-graph can be greater than (`)r−1/`

r−1. An r-graph S is called a star

if all edges in S contain a fixed vertex, which is called the center of S. It is easy to see that a

star does not contain Hr
`+1 as a subgraph, and the shadow density of a star can be arbitrarily

close to 1. Still, we are able to determine g(Hr
`+1, x) for all x ∈ [0, (`)r−1/`

r−1].

Theorem 3.1.23. Let ` ≥ r ≥ 3. Then projΩ(Hr
`+1) = [0, 1] and

g(Hr
`+1, x) = (`− r + 1)

(
xr

(`)r

) 1
r−1

for all x ∈ [0, (`)r−1/`
r−1] (see Figure 8).

2
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2/9

1/2

(a) ` = 3, r = 3.

3
8

0

3/32
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1/2

(b) ` = 4, r = 4.

Figure 8. Ω(Hr
`+1) for (`, r) = (3, 3), (4, 4) are contained in the dark areas above, respectively.
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3.1.4 Stability near the boundary

For a positive integer k a k-vertex Steiner triple system (STS) is a 3-graph on k vertices

such that every pair of vertices is contained in exactly one edge. It is known that a k-vertex

STS exists if and only if k ∈ 6N+ {1, 3} (e.g. see [243]), where 6N+ {1, 3} is the set of integers

that congruent to 1 or 3 modulo 6.

Let STS(k) denote the family of all Steiner triple systems on k vertices up to isomorphism.

In particular, STS(3) contains only the 3-graph K3
3 , STS(6) contains only the Fano plane

(see Figure 10), and STS(9) contains only the affine plane of order 3 (see Figure 11). For

k ∈ 6N + {1, 3} let sk = |STS(k)|. Then s3 = s7 = s9 = 1, s13 = 2 (see [43]), s15 = 80

(see [118]), and Keevash (see [137] and also [246; 54; 81]) proved that sk =
(
k/e2 + o(k)

)k2/6
.

Figure 10. The Fano plane. Figure 11. The affine plane of order 3.
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Definition 3.1.24. An r-graph H is a blowup of another r-graph G if there exists a map

ψ : V (H)→ V (G) so that ψ(E) ∈ G if and only if E ∈ H, and we say H is G-colorable if there

exists a map φ : V (H)→ V (G) so that φ(E) ∈ G for all E ∈ H.

Note that H is G-colorable if and only if H occurs as a subgraph in some blowup of G. The

following easy observation relates cancellative 3-graphs to the Steiner triple systems.

Observation 3.1.25. Suppose that H is a blowup of a Steiner triple system. Then H is

cancellative. Moreover, if H is a 3-graph on n vertices that is a balanced blowup of a Steiner

triple system on k vertices, then |∂H| ∼ k−1
k

n2

2 and |H| ∼ 1
6
k−1
k2
n3.

The following stability theorem connects the cancelltive 3-graph with the Steiner triple

systems.

Theorem 3.1.26. Let k ∈ 6N + {1, 3} and k ≥ 3. For every δ > 0 there exists ε > 0 and

n0 such that the following holds for all n ≥ n0. Suppose that H is cancellative 3-graph on n

vertices that satisfies

(
d(∂H)− k − 1

k

)2

+

(
d(H)− k − 1

k2

)2

≤ ε.

Then H is S-colorable for some S ∈ STS(k) after removing at most δn3 edges.

Remarks.

• Roughly speaking, Theorem 3.1.26 says if the shadow density and the edge density of a

cancellative 3-graph H are close (in the sense of Euclidean distance in R2) to k−1
k and k−1

k2
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respectively, then the structure of H is close to the balanced blowup of a Steiner triple

system on k vertices.

• Theorem 3.1.26 contains Keevash and Mubayi’s result (Theorem 3.1.15) as a special case

(i.e. k = 3) because by Corollary 3.1.18, if d(H) is close to 2/9, then d(∂H) must be

close to 2/3. So by Theorem 3.1.26, H is structurally close to the balanced blowup of K3
3 ,

which is T3(n, 3).

• Our proof shows that the relation δ = O(ε1/2) is sufficient for Theorem 3.1.26.

A more detailed analysis of the proof of Theorem 3.1.26 yields the following exact result.

Theorem 3.1.27. Let k ∈ 6N + {1, 3}, k ≥ 3, and n be a sufficiently large integer. Suppose

that H is a cancellative 3-graph on n vertices with |∂H| = t2(n, k). Then |H| ≤ s(n, k), where

s(n, k) = max {|G| : G is a blowup of S for some S ∈ STS(k) and |V (G)| = n} .

Moreover, equality holds only if H is a blowup of S for some S ∈ STS(k).

As an application of Theorem 3.1.26 we show that the feasible region function g(T3) has

countably many local maxima. This is the first example showing that the feasible region function

can have a local maximum.
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Theorem 3.1.28. Let k ∈ 6N + {1, 3} and k ≥ 3 be fixed. Then there exists an absolute

constant c > 0 such that for every constant ε ≤ c there exists another constant δ = δ(ε) > 0 so

that

g(T3, (k − 1)/k − ε) ≤ k − 1

k2
− δ and g(T3, (k − 1)/k + ε) ≤ k − 1

k2
− δ.

In particular, the point ((k − 1)/k, (k − 1)/k2) is a local maximum of g(T3).

Remark. Our proof shows that a linear dependency between δ and ε is sufficient for Theo-

rem 3.1.28.
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3.2 Warm up

In this section we present new short proofs to some exact and stability theorems mentioned

in the previous section.

3.2.1 Proofs of Theorems 3.1.14 and 3.1.15

In this section we prove Theorem 3.1.14 for the case 3 divides n and Theorem 3.1.15. Let

us first present some preliminary definitions and results.

The following inequality will be used intensively in our proofs.

Lemma 3.2.1 (Jensen’s inequality [129]). Suppose that f : I → R is a convex function on some

interval I and x1, . . . , xn ∈ I. Then

∑
i∈[n]

f(xi) ≥ n · f

(∑
i∈[n] xi

n

)
.

Let H be an r-graph on [n]. We abuse the use of notation in this section by calling a set

I ⊂ [n] independent if every edge in H contains at most one vertex in I.1 For every nonempty

set S ⊂ [n] define the link LH(S) of S in H as

LH(S) = {A ∈ ∂H : A ∪ {s} ∈ H for all s ∈ S} ,

and we will omit the subscript H if there is no cause of any ambiguity. For convenience we

write L(u) and L(u, v) for L({u}) and L({u, v}), respectively.

1 Note that this definition of independent set is stronger that the definition in Chapter 1.
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For T ∈ ∂H the neighborhood of T in H is defined as

NH (T ) = {v ∈ V (H) : T ∪ {v} ∈ H} ,

and the degree of T is dH (T ) = |NH (T ) |. Also, we will omit the subscript H if there is no

cause of any ambiguity. It follows from an easy double counting argument that

∑
T∈∂H

d (T ) = r|H|.

Given a graphG we define an auxiliary digraph ~G by letting ~G = {(u, v) : {u, v} ∈ G}. Note that

if {u, v} ∈ G, then the ordered pairs (u, v) and (v, u) are both contained in ~G. So |~G| = 2|G|.

For a set N we use N2 to denote the cartesian product N × N , which is the collection of all

ordered pairs (u, v) with u, v ∈ N (note that u and v can be the same vertex).

We have the following two lemmas concerning properties of cancellative 3-graphs.

Lemma 3.2.2. Let H be a cancellative 3-graph and v ∈ V (H) be a vertex. Then the link L(v)

is a triangle-free graph.

Proof. Suppose that the set {x, y, z} induces a copy of triangle in L(v). Then the three edges

{v, x, y}, {v, x, z}, {v, y, z} are all contained in H. This is a contradiction since

{v, x, y}4{v, x, z} = {y, z} ⊂ {v, y, z}.
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Lemma 3.2.3. Let H be a cancellative 3-graph, and T ∈ ∂H. Then the set N(T ) is independent

in H.

Proof. Let u, v be two vertices in N(T ), and let A1 = {u}∪T and A2 = {v}∪T . Then the sets

A1 and A2 are both contained in H. Since A14A2 = {u, v} and by the assumption that there

is no edge in H containing {u, v}, the set N(T ) is an independent set.

In the proof of Theorem 3.1.15 we will need the following lemma, which is essentially the

stability of triangle-free graphs. For the sake of completeness we include its proof here.

Lemma 3.2.4. Let G be a triangle-free graph on [n] with at least (1 − ε)(n/2)2 edges. Then

G contains two vertices v1 and v2 such that the sets NG(v1) and NG(v2) are disjoint and

|NG(v1)|+ |NG(v2)| ≥ (1− ε)n.

Proof. Since G is triangle-free, the sets NG(u) and NG(v) are disjoint for all edges uv in G. So in

order to prove this lemma it suffices to find an edge uv in G such that dG(u)+dG(v) ≥ (1−ε)n.

Combining an easy counting argument with Jensen’s inequality we obtain

∑
uv∈E(G)

(dG(u) + dG(v)) =
∑

v∈V (G)

d2
G(v) ≥

(∑
v∈V (G) dG(v)

)2

n
=

4|G|2

n
.

It follows from an easy averaging argument that there exists an edge uv in G such that dG(u)+

dG(v) ≥ 4|G|/n ≥ (1− ε)n.

The key step in our proofs of Theorems 3.1.14 and 3.1.15 is building a relation between H

and ∂H, which is Equation 3.4.
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Proof of Theorem 3.1.14 for the case 3 divides n. LetH be a cancellative 3-graph on n vertices.

Let us do a double counting on the number of ordered pairs (u, v) in [n]2\
−→
∂H. By Lemma 3.2.3,

N(T )2 ⊂ [n]2 \
−→
∂H for all T ∈ ∂H. On the other hand, since every {u, v} ⊂ [n] is contained in

exactly |L(u, v)| sets in {N(T ) : T ∈ ∂H}, we have

∑
T∈∂H

∑
(u,v)∈N(T )2

1

|L(u, v)|
=

∑
(u,v)∈[n]2\

−→
∂H

L(u,v)6=∅

∑
T∈∂H

{u,v}⊂N(T )

1

|L(u, v)|
≤ n2 − |

−→
∂H|

= n2 − 2|∂H|. (3.4)

By Lemmas 3.2.2 and 3.2.3, L(u, v) is a triangle-free graph on [n]\N(T ) for all (u, v) ∈ N(T )2.

So, by Mantel’s theorem, |L(u, v)| ≤ (n− d(T ))2 /4 for all (u, v) ∈ N(T )2 and all T ∈ ∂H.

Therefore, it follows from Equation 3.4 that

n2 − 2|∂H| ≥
∑
T∈∂H

∑
(u,v)∈N(T )2

1

|L(u, v)|
≥
∑
T∈∂H

4

(
d(T )

n− d(T )

)2

.

Since the function (x/(n− x))2 is convex on (0, n), it follows from Jensen’s inequality and∑
T∈∂H d(T ) = 3|H| that

4

(
3|H|/|∂H|

n− 3|H|/|∂H|

)2

|∂H| ≤ n2 − 2|∂H|.
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Now let z = 3|H|/|∂H|
n−3|H|/|∂H| . Then the inequality above implies that

|∂H| ≤ n2

2(2z2 + 1)
.

Substitute |H| = zn
3(z+1) |∂H| into the equation above we obtain that

|H| ≤ z

6(z + 1)(2z2 + 1)
n3.

Since the maximum of z
6(z+1)(2z2+1)

is 1/27, we obtain |H| ≤ (n/3)3. This proves Theorem 3.1.14

for the case 3 divides n.

Next we prove Theorem 3.1.15.

Proof of Theorem 3.1.15. Let δ > 0 be a sufficiently small constant, ε = δ/100, and n be a

sufficiently large integer. Let H be a cancellative 3-graph on [n] with at least (1− ε)t3(n, 3) >

(1− 2ε)(n/3)3 edges. First, we have the following claim.

Claim 3.2.5. There exists T ∈ ∂H such that

∑
(u,v)∈N(T )2

|L(u, v)| ≥ (1− 100ε)d2(T )

(
n− d(T )

2

)2

. (3.5)
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Proof. Suppose that Equation 3.5 is false for all T ∈ ∂H. Since the function 1/x is convex on

(0,∞), it follows from Jensen’s inequality that

∑
(u,v)∈N(T )2

1

|L(u, v)|
≥ d2(T )∑

(u,v)∈N(T )2 |L(u, v)|/d2(T )
>

4d2(T )

(1− 100ε) (n− d(T ))2 . (3.6)

Substitute Equation 3.6 into Equation 3.4 we obtain

∑
T∈∂H

4d2(T )

(1− 100ε) (n− d(T ))2 < n2 − 2|∂H|.

Similar to the proof of Theorem 3.1.14, applying Jensen’s inequality to the function (x/(n−x))2

we obtain

n2 − 2|∂H| ≥ 4

1− 100ε

(
3|H|/|∂H|

n− 3|H|/|∂H|

)2

|∂H| = 4z2

1− 100ε
|∂H|.

Therefore,

|∂H| ≤ n2

2
(

2z2

1−100ε + 1
) ,

and hence

|H| = zn

3(z + 1)
|∂H| ≤ z

6(z + 1)
(

2z2

1−100ε + 1
)n3.

By assumption we have

3|H|
|∂H|

>
3(1− 2ε)(n/3)3

n2/2
≥ n

9
.
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Therefore, we may assume that z > 1/8. Then, it follows that 2z2

1−100ε + 1 > 2z2+1
1−2ε (here we used

the assumption that ε is sufficiently small, and in particular, ε < 1/100). So

z

6(z + 1)
(

2z2

1−100ε + 1
) < (1− 2ε)

z

6(z + 1) (2z2 + 1)
≤ 1

27
(1− 2ε),

which implies that |H| < (1 − 2ε) (n/3)3 < (1 − ε)t3(n, 3), a contradiction. This prove

Claim 3.2.5.

Now choose T ∈ ∂H such that Equation 3.5 holds for T . Let V ′1 = N(T ). Then by the

Pigeonhole principle, there exists (u, v) ∈ N(T )2 such that

|L(u, v)| ≥
∑

(u,v)∈N(T )2 |L(u, v)|
|N(T )|2

≥ (1− 100ε)

(
n− d(T )

2

)2

. (3.7)

Let L = L(u, v) and U = [n] \ N(T ). By Lemma 3.2.3, N(T ) is an independent set in H,

so L is a graph on the set U . Due to Lemma 3.2.2, L is triangle-free. So by Lemma 3.2.4

and Equation 3.7, there exist x, y ∈ U such that NL(x) and NL(y) are disjoint and

|NL(x)|+ |NL(y)| ≥ (1− 100ε)(n− d(T )).



50

Let V2 = NL(x) and V3 = NL(y). Note that NL(x) = N({u, x}) and NL(y) = N({u, y}),

so by Lemma 3.2.3, V2 and V3 are independent in H. Now we have three pairwise disjoint

independent sets V ′1 , V2 and V3, and moreover,

|V ′1 |+ |V2|+ |V3| ≥ d(T ) + (1− 100ε)(n− d(T )) > n− 100εn.

To finish the proof we let V1 = [n] \ (V2 ∪ V3). Then the number of edges in H that have at

least two vertices in some Vi is at most
(

100εn
3

)
+
(

100εn
2

)(
n
1

)
+
(

100εn
1

)(
n
2

)
< 100εn3 = δn3. This

completes the proof of Theorem 3.1.15.

3.2.2 Proofs of Theorems 3.1.19 and 3.1.20

In this section we prove Theorem 3.1.19 for ` divides n and Theorem 3.1.20. Our proofs

are based on two results about K`+1-free graphs, and the first one is a stability theorem for

K`+1-free graphs.

Theorem 3.2.6 (Füredi [110]). Let t ≥ 0 be an integer, and let G be an n-vertex K`+1-free

graph with t2(n, `)− t edges. Then G contains an `-partite subgraph G′ with at least t2(n, `)−2t

edges.

The second result describes a relationship between the number of copies of Kr1 and Kr2 in

a K`+1-free graph, where r1 and r2 are two positive integers less than `+ 1.
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Theorem 3.2.7 (Fisher–Ryan [83]). Let G be an n-vertex K`+1-free graph. For every i ∈ [`]

let ki denote the number of copies of Ki in G. Then

(
k`(
`
`

)) 1
`

≤

(
k`−1(
`
`−1

)) 1
`−1

≤ · · · ≤

(
k2(
`
2

)) 1
2

≤

(
k1(
`
1

)) 1
1

.

Recall that for an r-graph H and an integer 1 ≤ i ≤ r − 1 the i-th shadow ∂iH of H is

∂iH =

{
A ∈

(
V (H)

r − i

)
: ∃B ∈ H such that A ⊂ B

}
.

In particular, ∂r−2H is a graph on V (H).

The following easy observation about H and ∂r−2H is key to our proofs.

Observation 3.2.8. (a) An r-graph H is K(r)
`+1-free iff ∂r−2H is K`+1-free.

(b) The number of edges in H is at most the number of copies of Kr in ∂r−2H.

Now we prove Theorem 3.1.19 for the case ` divides n.

Proof of Theorem 3.1.19 for the case ` divides n. LetH be a Kr`+1-free r-graph with n vertices.

Let kr denote the number of copies of Kr in ∂r−2H. Combining Observation 3.2.8 with Theo-

rem 3.2.7 and Turán’s theorem we obtain

|H| ≤ kr ≤
(
`

r

)(
|∂r−2H|(

`
2

) )r/2
≤
(
`

r

)(n
`

)r
.

This proves Theorem 3.1.19 for the case ` divides n.
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Next, we prove Theorem 3.1.20.

Proof of Theorem 3.1.20. Let δ > 0 be a sufficiently small constant, ε = (r − 2)!δ, and n be a

sufficiently large integer. LetH be a Kr`+1-free r-graph on n vertices with at least (1−ε)tr(n, `) ≥

(1 − 2ε)
(
`
r

)
(n/`)r edges. Let kr denote the number of copies of Kr in ∂r−2H. Combining

Observation 3.2.8 with Theorem 3.2.7 we obtain

|∂r−2H| ≥
(
`

2

)(
kr(
`
r

))2/r

≥
(
`

2

)(
|H|(
`
r

))2/r

≥ (1− 2ε)2/r

(
`

2

)(n
`

)2

≥ (1− 2ε)

(
`

2

)(n
`

)2
≥ (1− 2ε)t2(n, `).

Theorem 3.2.6 applied to ∂r−2H implies that there exists a partition V (H) = V1 ∪ · · · ∪V` such

that all but at most 2εt2(n, `) edges in ∂r−2H have at most one vertex in each Vi. It follows

that all but at most 2εt2(n, `)
(
n
r−2

)
≤ εnr/(r− 2)! ≤ δnr edges in H have at most one vertex in

each Vi. This completes the proof of Theorem 3.1.20.

3.2.3 Applications to the generalized Turán problems

In this section we present some applications of Theorem 3.2.7 for the generalized Turán

problems.

Let T and H be two ordinary graphs. Denote by ex(n, T,H) the maximum possible number

of copies of T in an ordinary H-free graph on n vertices. The function ex(n, T,H) is called the

generalized Turán number.
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Fix ` ≥ r ≥ 3. In [57] Erdős proved that ex(n,Kr,K`+1) ≤ tr(n, `). A similar argument as

in the proof of Theorem 3.1.20 also gives the following stability result to ex(n,Kr,K`+1). For

the sake of completeness let us include its short proof here.

Theorem 3.2.9. Fix integers ` ≥ r ≥ 3. Then for every δ > 0 there exist ε > 0 and n0 such

that the following holds for all n ≥ n0. If G is an n-vertex K`+1-free graph containing at least

(1 − ε)tr(n, `) copies of Kr, then the vertex set of G has a partition V1 ∪ · · · ∪ V` such that all

but at most δn2 edges in G have at most one vertex in each Vi.

In fact, the following proof shows that it suffices to choose ε = δ in Theorem 3.2.9.

Proof of Theorem 3.2.9. Let ε > 0 be a sufficiently small constant and n be a sufficiently large

integer. Let G be a K`+1-free graph on n vertices with at least (1−ε)tr(n, `) ≥ (1−2ε)
(
`
r

)
(n/`)r

copies of Kr. For 1 ≤ i ≤ ` let ki denote the number of copies of Ki in G. Then it follows from

Theorem 3.2.7 that

|G| = k2 ≥
(
`

2

)(
kr(
`
r

))2/r

≥ (1− 2ε)2/r

(
`

2

)(n
`

)2

≥ (1− 2ε)

(
`

2

)(n
`

)2
≥ (1− 2ε)t2(n, `).

Theorem 3.2.6 applied to G implies that there exists a partition V (G) = V1 ∪ · · · ∪V` such that

all but at most 2εt2(n, `) ≤ εn2 edges in G have at most one vertex in each Vi.

In [10], Alon and Shikhelman studied the function ex(n, T,H) for many other combinations

of T and H. In particular they proved that ex(n,Kr, H) = (1 + o(1))tr(n, `) for all graphs H
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with chromatic number χ(H) = ` + 1. Later their result was improved by Ma and Qiu [184],

who proved that ex(n,Kr, H) = tr(n, `) + biex(n,H) ·Θ(nr−2), where biex(n,H) is the Turán

number of the decomposition family of H. Their proof is based on the following stability

theorem for ex(n,Kr, H).

Theorem 3.2.10 (Ma–Qiu [184]). Fix ` ≥ r ≥ 3, and δ > 0. For every graph H with chromatic

number ` + 1, there exists an ε > 0 and an n0 such that the following holds for all n ≥ n0. If

G is an n-vertex H-free graph containing at least (1 − ε)tr(n, `) copies of Kr, then the vertex

set of G has a partition V1 ∪ · · · ∪ V` such that all but at most δn2 edges in G have at most one

vertex in each Vi.

Here we present a short proof to Theorem 3.2.10 using Theorem 3.2.9 and the Removal

Lemma, and our proof shows that ε = δ/3 suffices for Theorem 3.2.10.

Theorem 3.2.11 (Removal Lemma, e.g. see [110; 85]). Let H be a graph with chromatic

number ` + 1. For every δ > 0 there exists an n0 such that the following holds for all n ≥ n0.

Every n-vertex H-free graph G can be made K`+1-free by removing at most δn2 edges.

Proof of Theorem 3.2.10. Let ε = δ/3, and let n be sufficiently large. Let G be an n-vertex H-

free graph containing at least (1− ε)tr(n, `) copies of Kr. By the Removal Lemma, G contains

a K`+1-free subgraph G′ with at least |G| − εn2/`r edges. Since every edge e in G is contained

in at most
(
n
r−2

)
copies of Kr in G, the number of copies of Kr in G′ is at least (1− 2ε)tr(n, `).

By Theorem 3.2.9, the vertex set of G′ has a partition V1 ∪ · · · ∪ V` such that all but at most
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2εn2 edges in G′ have at most one vertex in each Vi. Therefore, all but at most 3εn2 edges in

G have at most one vertex in each Vi.

3.2.4 Concluding Remarks

We showed that a linear dependence between δ and ε is sufficient for Theorems 3.1.20,

3.1.15, 3.2.9 and 3.2.10, and in [110] Füredi showed that a linear dependence between δ and ε is

also sufficient for Theorem 3.2.6. It seems to be an interesting problem in general to determine

the exact relationship between ε and δ in these stability theorems, and we refer the reader to

[?; 13; 147] for related results on this topic.
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3.3 Proofs for the general results

In this section we prove several general results about the feasible region Ω(F). First let us

present a simple but useful idea that will be used in our proofs.

Fact 3.3.1. Let r ≥ 2 be an integer. Suppose that H is an r-graph on n vertices, and every edge

in H contains an (r − 1)-subset that is not covered by any other edge in H. Then |H| ≤
(
n
r−1

)
.

Indeed, if every edge in H contains a unique (r − 1)-subset, then we can map every edge

E ∈ H to an (r − 1)-subset of E that is not covered by any other edge in H. This map is an

injection from H to
(

[n]
r−1

)
and it implies the upper bound in Fact 3.3.1. Actually, it was shown

by Bollobás [23] that |H| ≤
(
n−1
r−1

)
.

Algorithm 1 (Remove edges with the edge density threshold d)

Input: An r-graph H and the density threshold d ∈ [0, 1].

Operation: If d(H) ≤ d or |H| ≤
(
n
r−1

)
, then do nothing and let H be the output. Otherwise,

by Fact 3.3.1, there exists E ∈ H such that every (r−1)-subset of E is covered by another edge

in H. Remove E from the edge set of H, and let H denote the resulting r-graph. Repeat this

operation until d− 1/
(
n
r

)
< d(H) ≤ d.

Output: Either the original r-graph H or a subgraph H′ ⊂ H with d − 1/
(
n
r

)
< d(H′) ≤ d,

and |∂H′| = |∂H|.

Notice that the Operation above does not change |∂H| since all (r−1)-subsets of the removed

edge E are also covered by some other edge in H. Therefore, the output r-graph H′ satisfies
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|∂H′| = |∂H|. On the other hand, since each step of the operation reduces |H| by exactly one,

d(H) can be reduced to some real number d′ with d− 1/
(
n
r

)
< d′ ≤ d.

3.3.1 Basic properties

In this section we will prove Propositions 3.1.3, 3.1.7, and 3.1.8, and Theorem 3.1.11. First

we prove Proposition 3.1.3.

Proof of Proposition 3.1.3. Let (x, y) be a limit point of Ω(F). For every positive integer k we

will specify a hypergraph Hk with v(Hk) ≥ k, |d(∂Hk)− x| ≤ 1/k and |d(Hk)− y| ≤ 1/k. The

resulting sequence (Hk)∞k=1 will be good and realize (x, y), so it will establish (x, y) ∈ Ω(F).

For the construction of Hk we first take a point (xk, yk) ∈ Ω(F) such that |x−xk| ≤ 1/(2k) and

|y− yk| ≤ 1/(2k). Every good sequence (Hk,m)∞m=1 realizing (xk, yk) contains a hypergraph Hk

with v(Hk) ≥ k, |d(∂Hk) − xk| ≤ 1/k and |d(Hk) − yk| ≤ 1/(2k). By the triangle inequality,

Hk has the desired properties.

Next we prove Proposition 3.1.7. Its proof uses Algorithm 1.

Proof of Proposition 3.1.7. Since (x0, y0) ∈ Ω(F), there exists a good sequence of F-free r-

graphs (Hk)∞k=1 for which limk→∞ d(∂Hk) = x0 and limk→∞ d(Hk) = y0. Now fix y ∈ [0, y0).

For every k ≥ 1 apply Algorithm 1 to Hk with edge density threshold y and let H′k denote

the r-graph that Algorithm 1 outputs. We claim that (H′k)
∞
k=1 is a good sequence of F-free

r-graphs that realizes (x0, y). Indeed, choose ε = (y0 − y)/2 > 0, by the assumption that

limk→∞ d(Hk) = y0, there exists k0 such that d(Hk) ∈ (y0 − ε, y0 + ε) for all k ≥ k0. Therefore,

by Algorithm 1, y − 1/
(
v(Hk)
r

)
< d(H′k) ≤ y for all k ≥ k0, and hence limk→∞ d(H′k) = y. On
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the other hand, since |∂H′k| = |∂Hk| for all k ≥ 1, limk→∞ d(∂H′k) = x. Therefore, (H′k)
∞
k=1 is

a good sequence of F-free r-graphs that realizes (x0, y), and hence (x0, y) ∈ Ω(F).

Recall that ex(n,F1) ≤ ex(n,F2) whenever F2 ⊂ F1. By the definition of g(F), a similar

inequality also holds for g(F).

Observation 3.3.2. Let r ≥ 3. Suppose that F1 and F2 are two families of r-graphs with

F1 ⊂ F2. Then Ω(F2) ⊂ Ω(F1). In particular, g(F2, x) ≤ g(F1, x) for all x ∈ projΩ(F2).

Now we are ready to prove Proposition 3.1.7.

Proof of Proposition 3.1.7. By Observation 3.3.2, it suffices to show that projΩ(∅) = [0, 1] and

g(∅, x) = xr/(r−1) for all x ∈ [0, 1]. The first part is easy, since the complete r-graph on n

vertices has shadow density 1, and it follows from Observation 3.1.5 that projΩ(∅) = [0, 1].

Now we consider the second part. First we show that g(∅, x) ≤ xr/(r−1) for all x ∈ [0, 1]. Let

(Hk)∞k=1 be a good sequence of r-graph that realizes (x, y). For every k ≥ 1 let αk denote the

real number that satisfies |∂Hk| =
(
αkv(Hk)
r−1

)
. By the Kruskal–Katona theorem, |Hk| ≤

(
αkv(Hk)

r

)
for all k ≥ 1. By assumption and limk→∞ v(Hk) =∞,

x = lim
k→∞

|∂Hk|(
v(Hk)
r−1

) = lim
k→∞

(
αkv(Hk)
r−1

)(
v(Hk)
r−1

) = lim
k→∞

(αk)
r−1,

which implies that limk→∞ αk = x1/(r−1). Therefore, by assumption,

y = lim
k→∞

|Hk|(
v(Hk)
r−1

) ≤ lim
k→∞

(
αkv(Hk)

r

)(
v(Hk)
r

) = lim
k→∞

(αk)
r = x

r
r−1 ,
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and this proves that g(∅, x) ≤ xr/(r−1) for all x ∈ [0, 1].

Next we show that g(∅, x) ≥ xr/(r−1) for all x ∈ [0, 1]. Choose an arbitray x ∈ [0, 1] and let

α = x1/(r−1). Let Hn(α) denote the vertex disjoint union of a complete r-graph on αn vertices

and a set of (1 − α)n isolated vertices. Then we claim that (Hk(α))∞k=1 is a good sequence of

r-graphs that realizes (x, xr/(r−1)). Indeed,

lim
k→∞

|∂Hk(α)|(
n
r−1

) = lim
k→∞

(
αn
r−1

)(
n
r−1

) = αr−1 = x,

and

lim
k→∞

|Hk(α)|(
n
r

) = lim
k→∞

(
αn
r

)(
n
r

) = αr = x
r
r−1 ,

and it follows from the definition that g(∅, x) ≥ xr/(r−1) for all x ∈ [0, 1].

3.3.2 Continuity and differentiability

In this section we will prove Theorem 3.1.11 and some other related corollaries. We will use

the following theorem in our proofs.

Theorem 3.3.3 (see Section 3 of Chapter 3 in [235]). Let f : R→ R be a monotone function.

Then f has at most countably many discontinuities of the first kind and no discontinuity of the

second kind. Moreover, f is almost everywhere differentiable.

The following lemma is the main tool in our proofs.
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Lemma 3.3.4. Let r ≥ 3 and F be a family of r-graphs. Then

(g(F , x+ h))
r−1
r ≤ (g(F , x))

r−1
r +

(g(F , x))
r−1
r

x
h

for all x ∈ projΩ(F) \ {0} and all h ≥ 0 with x+ h ∈ projΩ(F).

Proof. Suppose that x+ h ∈ projΩ(F). Choose

α =

(
x+ h

x

) 1
r−1

− 1.

Let (Hk)∞k=1 be a good sequence of F-free r-graphs that realizes (x+ h, g(F , x+ h)). For every

k ≥ 1 let nk = v(Hk) and let H′k be obtained from Hk by adding a set of αnk isolated vertices

and let n′k = (1 + α)nk. Then,

lim
k→∞

|∂H′k|( n′k
r−1

) = lim
k→∞

|∂Hk|(
(1+α)nk
r−1

) =
x+ h

(1 + α)r−1
= x,

and

lim
k→∞

|H′k|(
n′k
r

) = lim
k→∞

|Hk|(
(1+α)nk

r

) =
g(F , x+ h)

(1 + α)r
=

(
x

x+ h

) r
r−1

g(F , x+ h).

Therefore, (H′k)
∞
k=1 a good sequence of F-free r-graphs that realizes

(
x,

(
x

x+ h

) r
r−1

g(F , x+ h)

)
.
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Consequently,

g(F , x) ≥
(

x

x+ h

) r
r−1

g(F , x+ h), (3.8)

which gives

(g(F , x+ h))
r−1
r ≤ (g(F , x))

r−1
r +

(g(F , x))
r−1
r

x
h.

Corollary 3.3.5. Let r ≥ 3 and F be a family of r-graphs. Then for any x ∈ projΩ(F) \ {0}

and any δ > 0, there exists ε > 0 such that g(F , x′) > g(F , x)− δ for all x′ ∈ (x− ε, x).

Proof. We may assume that δ < 1. Choose ε = δx/3 and let x′ ∈ (x− ε, x). Then Equation 3.8

gives

g(F , x′) ≥
(
x′

x

) r
r−1

g(F , x)

=

(
1− x− x′

x

) r
r−1

g(F , x)

≥
(

1− 2ε

x

)
g(F , x) = g(F , x)− 2g(F , x)ε

x
> g(F , x)− δ,

where the second inequality follows from the fact that (1 − x)a ≥ 1 − ax for all x ∈ [0, 1] and

all a ≥ 1.

Proposition 3.1.3 together with Corollary 3.3.5 will show that g(F) does not contain remov-

able discontinuities.
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Corollary 3.3.6. Let r ≥ 3 and F be a family of r-graphs. Then g(F) does not contain

removable discontinuities.

Proof. Suppose that x0 ∈ projΩ(F) is a removable discontinuity of g(F). Then x0 > 0

and limx→x−0
g(F , x) = limx→x+0

g(F , x) 6= g(F , x0). Let y0 = limx→x−0
g(F , x). By Propo-

sition 3.1.3, (x0, y0) ∈ Ω(F), and by the definition of g(F), g(F , x0) > y0. Letting δ =

(g(F , x0)− y0)/2 in Corollary 3.3.5, we obtain

y0 = lim
x→x−0

g(F , x) > g(F , x0)− δ =
g(F , x0) + y0

2
> y0,

a contradiction.

Now we are ready to prove Theorem 3.1.11.

Proof of Theorem 3.1.11. First we show that g(F) is almost everywhere differentiable. Let

f(x) = (g(F , x))
r−1
r − x. It follows from Lemma 3.3.4 and Proposition 3.1.8 that

(g(F , x+ h))
r−1
r ≤ (g(F , x))

r−1
r +

(g(F , x))
r−1
r

x
h

≤ (g(F , x))
r−1
r +

(
x

r
r−1

) r−1
r

x
h

= (g(F , x))
r−1
r + h,

which implies that f is decreasing on projΩ(F). By Theorem 3.3.3, f is almost everywhere

differentiable, and so is g(F).
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Next, we show that g(F) has at most countably many jump discontinuities. By Theo-

rem 3.3.3, f has at most countably many discontinuities of the first kind, and so does g(F)

since g(F , x) = (f(x) + x)r/(r−1) for all x ∈ projΩ(F). Corollary 3.3.5 shows that g(F) does

not have a removable discontinuity, therefore, g(F) has at most countably many jump discon-

tinuities.

Finally, we show that g(F) is left-continuous. Let x0 ∈ projΩ(F) be a discontinuity of

g(F). By the previous result, x0 can only be a jump discontinuity. Let y−0 = limx→x−0
g(F , x)

and y+
0 = limx→x+0

g(F , x). By Proposition 3.1.3, (x0, y
−
0 ) ∈ Ω(F) and (x0, y

+
0 ) ∈ Ω(F). So, it

suffices to show that y−0 > y+
0 . Indeed, suppose that y+

0 > y−0 . Then, by the definition of g(F)

we would have g(F , x0) = y+
0 . Letting δ = (y+

0 − y
−
0 )/2 in Corollary 3.3.5, we obtain

y−0 = lim
x→x−0

g(F , x) > g(F , x0)− δ =
y−0 + y+

0

2
> y−0 ,

a contradiction, and this completes the proof.

The proof of Theorem 3.1.11 also gives the following corollary.

Corollary 3.3.7. Let r ≥ 3 and F be a family of r-graphs. Suppose that x0 ∈ projΩ(F) is a dis-

continuity of g(F). Then both limx→x−0
g(F , x) and limx→x+0

g(F , x) exist and limx→x−0
g(F , x) >

limx→x+0
g(F , x). In particular, if g(F) is increasing on [c1, c2] for some c2 > c1 ≥ 0, then g(F)

is continuous on [c1, c2].
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3.4 A point of discontinuity

In this section we will prove Theorem 3.1.12 by defining a family D of 3-graphs, and showing

that g(D) is discontinuous at x = 2/3.

2
3 10

2/9

1/2

Figure 11. The function g(D) is discontinuous at x = 2/3.

First we define a 3-graph Sn on [n] as follows. Fix u ∈ [n], let

Sn =

{
uvw : vw ∈

(
[n] \ {u}

2

)}
,

and note that Sn is a star with |Sn| =
(
n−1

2

)
.

Definition 3.4.1. Let D be the collection of all 3-graphs F ∈ K3
4 such that F 6⊂ Sn for all

n ≥ 4.
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Note that D 6= ∅ as H3
4 ∈ D. Since Sn is D-free and limn→∞ |∂Sn|/

(
n
2

)
= 1, by Observa-

tion 3.1.5, projΩ(D) = [0, 1].

Since T3(n, 3) is K3
4-free, ex(n,D) ≥ t3(n, 3). On the other hand, ex(n,D) ≤ ex(n,H3

4 ),

which, by [209], is at most t3(n, 3) when n is sufficiently large. Therefore, we obtain the

following result.

Theorem 3.4.2. Let n be sufficiently large. Then ex(n,D) = t3(n, 3) and T3(n, 3) is the unique

D-free 3-graph with n vertices and t3(n, 3) edges.

Theorem 3.4.2 implies that g(D, x) ≤ 2/9 for all x ∈ [0, 1] and equality holds for x = 2/3.

Therefore, in order to prove Theorem 3.1.12 it suffices to prove the following result.

Theorem 3.4.3. There exists an absolute constant δ0 > 0 such that the following is true for

all ε ∈ (0, 10−8) and sufficiently large n. Suppose that H is a D-free 3-graph on n vertices with

|∂H| = (1/3 + ε)n2. Then |H| ≤ (1/27− δ0)n3.

The proof of Theorem 3.4.3 uses a stability result for D-free 3-graphs, which can be easily

obtained from a stability theorem for Hr
`+1-free r-graphs proved by Pikhurko [209].

Theorem 3.4.4 (Stability). For every ξ > 0 there exists δ > 0 (we may assume that δ ≤ ξ)

and n0 = n0(ξ) such that the following holds for all n ≥ n0. Suppose that H is a D-free 3-graph

on n vertices with |H| ≥ (1/27 − δ)n3. Then V (H) has a partition V1 ∪ V2 ∪ V3 such that all

but at most ξn3 edges in H have exactly one vertex in each Vi.

Now we are ready to prove Theorem 3.4.3.
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Proof of Theorem 3.4.3. We prove Theorem 3.4.3 by contradiction. Suppose that for all con-

stant δ > 0 and all integers n0 there exists ε = ε(δ) ∈ (0, 10−8) such that there exists a 3-graph

H on n > n0 vertices for some n with |∂H| = (1/3 + ε)n2 and |H| > (1/27− δ)n3.

Choose ξ > 0 to be sufficiently small, and let δ > 0 and n0 = n0(ξ) be given by Theorem 3.4.4

and note that we may assume that δ ≤ ξ. By assumption, there exists ε ∈ (0, 10−8) and a D-

free 3-graphs H on n > n0 vertices with |∂H| = (1/3 + ε)n2 and |H| > (1/27 − δ)n3. Apply

Theorem 3.4.4 to H. We obtain a partition V (H) = V1 ∪ V2 ∪ V3 such that all but at most ξn3

edges in H have exactly one vertex in each Vi. Let H′ denote the induced 3-partite 3-graph of

H on V1 ∪ V2 ∪ V3, that is,

H′ = {E ∈ H : |E ∩ Vi| = 1 for all i ∈ [3]} .

Note that

|H′| > n3

27
− δn3 − ξn3. (3.9)

Claim 3.4.5.
∣∣|Vi| − n

3

∣∣ < 4(δ + ξ)1/2n for all i ∈ [3].

Proof. Fix 1 ≤ i ≤ 3 and let α = |Vi|. Then |H′| ≤ α(n− α)2/4 and Equation 3.9 gives

α(n− α)2

4
>
n3

27
− δn3 − ξn3,

which implies n/3− 4(δ + ξ)1/2n < α < n/3 + 4(δ + ξ)1/2n.
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Let G = ∂H and G′ = ∂H′. Note that H′ ⊂ H, G′ ⊂ G, and G′ is 3-partite. Let K be a

3-partite subgraph of G with the maximum number of edges among all 3-partite subgraphs of

G, and let X1, X2, X3 denote the three parts of K.

Claim 3.4.6. |K| ≥ |G′| > n2

3 − 5(δ + ξ)1/2n2.

Proof. Counting the number of edges in H′ we obtain

|G′|
(n

3
+ 4(δ + ξ)1/2n

)
Claim 3.4.5

> 3|H′|
Equation 3.9

>
n3

9
− 3 (δ + ξ)n3,

which implies |G′| > n2/3 − 5(δ + ξ)1/2n2. Since G′ is also a 3-partite subgraph of G, by the

maximality of K, we obtain |K| ≥ |G′|.

Claim 3.4.7.
∣∣|Xi| − n

3

∣∣ < 4 (δ + ξ)1/4 n for all i ∈ [3].

Proof. Fix i ∈ [3] and let α′ = |Xi|. By Claim 3.4.6,

α′(n− α′) +
(n− α′)2

4
≥ |K| ≥ |G′| > n2

3
− 5(δ + ξ)1/2n2,

which implies n/3− 4 (δ + ξ)1/4 n < α′ < n/3 + 4 (δ + ξ)1/4 n.

For uv ∈ K the degree of uv in H is d(uv) := |{E ∈ H : {u, v} ⊂ E}|. Our next claim shows

that most edges in K have a large degree.

Claim 3.4.8. The number of edges in K that have degree at most 10 in H is at most n2/40000.
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Proof. Suppose not. Then the assumption that |G| = |∂H| = (1/3 + ε)n2 together with Claim-

s 3.4.6 and 3.4.7 imply

|H|
Claim 3.4.7
≤ 1

3

(
|K| − n2

40000

)(n
3

+ 4(δ + ξ)1/4n
)

+
10n2

40000
+ (|G| − |K|)n

Claim 3.4.6
≤ 1

3

(
n2

3
− n2

40000

)(n
3

+ 4(δ + ξ)1/4n
)

+
n2

4000
+ εn3 + 5(δ + ξ)1/4n3

<
n3

27
− n3

500000
,

which contradicts the assumption that |H| > (1/27− δ)n3. Here we used the fact that δ, ξ are

sufficiently small, n is sufficiently large, and ε < 10−8.

The next claim shows that if G has a large complete 4-partite subgraph, then it contains

many edges that have degree at most 10 in H. This is the only place where we use the definition

of D.

Claim 3.4.9. Let v1v2 ∈ G and U1, U2 ⊂ V (H) \ {v1, v2}. Let

L = {{u1, u2} : u1 ∈ U1, u2 ∈ U2 and d(u1u2) ≥ 10} .

Suppose that v1 and v2 are adjacent to all vertices in U1∪U2. Then L is an intersecting family,

and hence |L| < n.

Proof. Let u1u2 ∈ L and

Ev1v2 = {E ∈ H : {v1, v2} ⊂ E} .
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We claim that every set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 6= ∅. Indeed, suppose that there exists

Ev1v2 ∈ Ev1v2 with Ev1v2 ∩ {u1, u2} = ∅. Since d(u1u2) ≥ 10, there exists Eu1u2 ∈ H such that

{u1, u2} ∈ Eu1u2 and Eu1u2 ∩ Ev1v2 = ∅. Let Ev1u1 , Ev1u2 , Ev2u1 , and Ev2u2 be edges in H that

cover v1u1, v1u2, v2u1, v2u2, respectively, and let F1 denote the 3-graph with edge set

{Ev1v2 , Ev1u1 , Ev1u2 , Ev2u1 , Ev2u2 , Eu1u2}.

Note that F1 ⊂ H and F1 ∈ K3
4. However, since Eu1u2∩Ev1v2 = ∅, F1 6⊂ Sn for any n, and hence

F1 ∈ D, which is a contradiction. Therefore, every set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 6= ∅.

Suppose that L contains another edge w1w2 that is disjoint from u1u2. Then, the same

argument as above implies that every set E ∈ Ev1v2 satisfies E ∩{w1, w2} 6= ∅. Therefore, every

set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 6= ∅ and E ∩ {w1, w2} 6= ∅, which is impossible since E is

a 3-set. Therefore, L is intersecting and it follows from the Erdős–Ko–Rado theorem [69] that

|L| < n.

Our goal in the rest of the proof is to find v1v2 ∈ G and U1, U2 ⊂ V (H) \ {v1, v2} with

|U1||U2| large, such that v1 and v2 are adjacent to all vertices in U1∪U2. Then, by Claim 3.4.9,

many edges in the induced subgraph of K on U1 ∪ U2 would have degree at most 10, which

contradicts Claim 3.4.8.

Let

B = {uv ∈ G : {u, v} ⊂ Xi for some i ∈ [3]} ,
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and

M =

{
{u, v} ∈

(
V (H)

2

)
\K : u ∈ Xi, v ∈ Xj for some i, j ∈ [3] and i 6= j

}
.

Sets in B are called bad edges of K and sets in M are called missing edges of K. For v ∈ V (H)

let dM (v) denote the number of missing edges that contain v. By Claim 3.4.6,

|M | ≤ 5(δ + ξ)1/2n2. (3.10)

On the other hand, the assumption |G| = n2/3 + εn2 implies

|B| ≥ |M |+ εn2. (3.11)

Let Bi be the collection of bad edges in G that are completely contained in Xi for i ∈ [3].

Without loss of generality, we may assume that |B1| ≥ |B|/3. Let ∆ denote the maximum

degree of B1.

Case 1: ∆ < n/100.

Then there exits a set M ′ of at least |B1|/(2∆) > 15|B|/n pairwise disjoint edges in B1. Fix

uv ∈ B1. Let Ui(uv) = NK(u) ∩ NK(v) ∩ X2 for i ∈ {2, 3} and let Kuv denote the induced

subgraph of K on U2(uv)∪U3(uv). By Claim 3.4.9, all but at most n edges in Kuv have degree

at most 10 in H. It follows that

|U2(uv)||U3(uv)|
Claim 3.4.8
≤ n2

40000
+ n+ |M |

Equation 3.10
≤ n2

40000
+ n+ 5(δ + ξ)1/2n2 <

n2

30000
.
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Therefore, by Claim 3.4.7,

|NK(u) ∩NK(v)| < n

3
+ 4(δ + ξ)1/4n+

n2/30000

n/3 + 4(δ + ξ)1/4n
<
n

3
+ 4(δ + ξ)1/4n+

n

10000
,

and it follows from Inclusion-Exclusion and Claim 3.4.7 that

dK(u) + dK(v) = |NK(u) ∪NK(v)|+ |NK(u) ∩NK(v)|

≤ 2
(n

3
+ 4(δ + ξ)1/4n

)
+
n

3
+ 4(δ + ξ)1/4n+

n

10000

<
101n

100
. (3.12)

Note that

dK(u) + dM (u) + dK(v) + dM (v) = 2 (|X2|+ |X3|) ,

which implies

|M | ≥
∑
uv∈M ′

(dM (u) + dM (v)) ≥ 15|B|
n

(2 (|X2|+ |X3|)− dK(u)− dK(v))

Claim 3.4.7 and Equation 3.12
>

15|B|
n

(
4n

3
− 102n

100

)
> 4|B|

Equation 3.11
> |M |,

a contradiction.

Case 2: ∆ ≥ n/100.

Then choose a vertex v1 ∈ X1 with degree ∆. Let Ni = NK(v1) ∩ Xi for 1 ≤ i ≤ 3. The
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maximality of K implies that |N2| ≥ ∆ and |N3| ≥ ∆, since otherwise we could move v1 into V2

or V3 to get a larger 3-partite subgraph of G. Choose v2 ∈ N1 and let Ui(v1v2) = NK(v2) ∩Ni

for i ∈ {2, 3}. Similar to Case 1, we have |U2(v1v2)||U3(v1v2)| ≤ n2/30000. Therefore, v2 is not

adjacent (in K) to at least n/200 vertices in N2 ∪N3, which implies

|M | ≥
∑
u∈N1

dM (u) ≥ n

100
× n

200
=

n2

20000
> 5(δ + ξ)1/2n2

Equation 3.10
≥ |M |,

a contradiction.

Christian Reiher pointed out that the conclusion in Theorem 3.4.3 still holds even if we

replace the assumption |∂H| = (1/3 + ε)n2, ε ∈ (0, 10−8) by |∂H| ≥ t2(n, 3) + 1. In fact he

proved the following stronger stability theorem for D, which immediately implies the stronger

version of Theorem 3.4.3.

Lemma 3.4.10 (Reiher). For every ε > 0 there are δ > 0 and n0 such that every D-free 3-graph

H on n ≥ n0 vertices with |H| ≥ (1/27 − δ)n3 admits a partition V (H) = U1 ∪ U2 ∪ U3 ∪ U4

such that

• every edge E ∈ H not incident with U4 has exactly one vertex in each of U1, U2, U3,

• the sets U1, U2, U3 are independent in ∂H,

• every vertex in U4 is incident with at most (1/18+ε)n2 edges in H and at most (1/2+ε)n

edges in ∂H,

• and |U4| ≤ εn.
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3.5 Cancellative hypergraphs

In this section we prove Theorems 3.1.16 and 3.1.17. First let us present some useful lemmas.

For a subset S ⊂ V (H) let

σH(S) =
∑
v∈S

dH(v).

When it is clear from context we will omit the subscript H from the notions above.

Lemma 3.5.1. Let r ≥ 3 and let H be a cancellative r-graph. Then, for every v ∈ V (H) the

link L(v) is a cancellative (r − 1)-graph.

Proof. Suppose that there exist A,B,C ∈ L(v) such that A4B ⊂ C. Let A′ = A ∪ {v},

B′ = B ∪ {v} and C ′ = C ∪ {v}, and note that A′, B′, C ′ ∈ H. Then, A′4B′ ⊂ C ′, which is a

contradiction.

Lemma 3.5.2. Let r ≥ 3 and let H be a cancellative r-graph. Suppose that {u, v} ⊂ V (H) is

covered by an edge in H. Then L(u) ∩ L(v) = ∅.

Proof. Suppose that there exists E ∈ L(u)∩L(v). Let A = E ∪{u} and B = E ∪{v}, and note

that A,B ∈ H. Then A4B = {u, v}, which by assumption is covered by another edge C in H,

a contradiction.

Lemma 3.5.2 gives the following corollary.
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Corollary 3.5.3. Let r ≥ 3 and H be a cancellative r-graph. Let S ⊂ V (H) and suppose that

(∂r−2H)[S] is a complete graph. Then,

σH(S) =
∑
v∈S

dH(v) ≤ |∂H|.

Proof. Suppose that S = {v1, . . . , vs}. Lemma 3.5.2 implies that the links L(v1), . . . , L(vs) are

pairwise edge disjoint. Since
⋃s
i=1 L(vi) ⊂ ∂H, we have

∑
v∈S dH(v) ≤ |∂H|.

3.5.1 Proof of Theorem 3.1.16

In this section we will prove Theorem 3.1.16, but instead of proving it directly we will prove

the following stronger statement.

Theorem 3.5.4. Let r ≥ 2 and let H be a cancellative r-graph. Then

|H| ≤
(
|∂H|
r

) r
r−1

.

First we show that Theorem 3.5.4 implies Theorem 3.1.16.

Proof of Theorem 3.1.16. Let us consider the lower bound first. Let α ∈ [0, 1] and let Hn(α)

be the vertex disjoint union of Tr(αn, r) and a set of (1− α)n isolated vertices. It is clear that

Tr 6⊂ Hn(α). Let

x = lim
n→∞

|∂Hn(α)|(
n
r−1

) = lim
n→∞

r (αn/r)r−1(
n
r−1

) =
αr−1(r − 1)!

rr−2
,
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and

y = lim
n→∞

|Hn(α)|(
n
r

) = lim
n→∞

(αn/r)r(
n
r

) =
αr(r − 1)!

rr−1
.

Then, y = (xr/r!)1/(r−1). Letting α vary from 0 to 1, we obtain g(Tr, x) ≥ (xr/r!)1/(r−1) for all

x ∈ [0, (r − 1)!/rr−2].

Next we prove the upper bound. Suppose that (Hk)∞k=1 is a good sequence of cancellative

r-graphs that realizes (x, y). Let xk = (r − 1)!|∂Hk|/ (v(Hk))r−1 and yk = r!|Hk|/ (v(Hk))r for

all k ≥ 1. Then Theorem 3.5.4 gives

yk (v(Hk))r

r!
≤

(
xk (v(Hk))r−1

r(r − 1)!

) r
r−1

,

which implies

yk ≤
(

(xk)
r

r!

) 1
r−1

.

Letting k →∞, we obtain y ≤ (xr/r!)1/r−1, and this completes the proof.

Now we prove Theorem 3.5.4. We will use the following fact.

Fact 3.5.5. Let X be a collection of non-negative real numbers and a ∈ [0, 1]. Then

∑
x∈X

xa ≤ |X|
(∑

x∈X x

|X|

)a
= |X|1−a

(∑
x∈X

x

)a
, (3.13)

and (∑
x∈X

x

)2

≤ |X|
∑
x∈X

x2. (3.14)
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Proof of Theorem 3.5.4. We proceed by induction on r. When r = 2, this is just Mantel’s

theorem, so we may assume that r ≥ 3.

By Lemma 3.5.1, L(v) is a cancellative (r − 1)-graph for all v ∈ V (H). Therefore, by the

induction hypothesis,

d(v) ≤
(
|∂L(v)|
r − 1

) r−1
r−2

. (3.15)

It follows that

|H| = 1

r

∑
v∈V (H)

d(v) =
1

r

∑
v∈V (H)

(d(v))
1
r−1 (d(v))

r−2
r−1

Equation 3.15
≤ 1

r(r − 1)

∑
v∈V (H)

(d(v))
1
r−1 |∂L(v)|. (3.16)

Notice that

∑
v∈V (H)

(d(v))
1
r−1 |∂L(v)| =

∑
v∈V (H)

∑
S∈∂H
v∈S

(d(v))
1
r−1

=
∑
S∈∂H

∑
v∈S

(d(v))
1
r−1

Equation 3.13
≤ ((r − 1)|∂H|)

r−2
r−1

( ∑
S∈∂H

∑
v∈S

d(v)

) 1
r−1

= ((r − 1)|∂H|)
r−2
r−1

( ∑
S∈∂H

σ(S)

) 1
r−1

. (3.17)
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Define σ̂ = max {σ(H) : H ∈ H} and suppose that E ∈ H satisfies
∑

v∈E d(v) = σ̂. Then,

∑
S∈∂H

σ(S) =
∑

S∈
⋃
v∈E L(v)

σ(S) +
∑

S∈∂H\
⋃
v∈E L(v)

σ(S)

Lemma 3.5.2
=

∑
v∈E

∑
S∈L(v)

σ(S) +
∑

S∈∂H\
⋃
v∈E L(v)

σ(S)

≤
∑
v∈E

d(v) (σ̂ − d(v)) + (|∂H| − σ̂) σ̂

Equation 3.14
≤

(∑
v∈E

d(v)

)(
σ̂ −

∑
v∈E d(v)

r

)
+ (|∂H| − σ̂) σ̂

= σ̂

(
σ̂ − σ̂

r

)
+ (|∂H| − σ̂) σ̂

=

(
|∂H| − σ̂

r

)
σ̂. (3.18)

Note that Corollary 3.5.3 gives σ̂ ≤ |∂H|. On the other hand, since (|∂H| − σ̂/r) σ̂ is increasing

in σ̂ when σ̂ ≤ r|∂H|/2, it follows from Equation 3.18 and r ≥ 3 that

∑
S∈∂H

σ(S) ≤
(
|∂H| − σ̂

r

)
σ̂ ≤ r − 1

r
|∂H|2. (3.19)

Plugging Equation 3.17 and Equation 3.19 into Equation 3.16, we obtain

|H| ≤ 1

r(r − 1)
((r − 1)|∂H|)

r−2
r−1

(
r − 1

r
|∂H|2

) 1
r−1

=

(
|∂H|
r

) r
r−1

,

and this completes the proof.
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3.5.2 Proof of Theorem 3.1.17

In this section we will prove Theorem 3.1.17. As before, we will prove a stronger statement

which implies Theorem 3.1.17.

Theorem 3.5.6. Suppose that H is a cancellative 3-graph on n vertices. Then

|H| ≤
(
n2 − 2|∂H|

)
|∂H|

3n
+ 3n2.

First we show that Theorem 3.5.6 implies Theorem 3.1.17.

Proof of Theorem 3.1.17. Let us consider the lower bound first. Recall that a k-vertex Steiner

triple system (STS for short) is a 3-graph on k vertices such that every pair of vertices is

covered by exactly one edge. It is known that a k-vertex STS exists iff k ≡ 1 or 3 (mod 6)

(e.g. see [243]). Let STS(k) denote the family of all Steiner triple systems on k vertices. Let

S(n, k) denote the collection of all 3-graphs on n vertices that can be obtained from a 3-graph

H ∈ STS(k) by blowing up every vertex in H into a set of size either bn/kc or dn/ke. It is

easy to see that every 3-graph in S(n, k) is cancellative.

Fix an integer k with k ≡ 1 or 3 (mod 6). Let Hn ∈ S(n, k) and in order to keep the

calculations simple let us assume that k divides n. Then

lim
n→∞

|∂Hn|(
n
2

) =
(k − 1)n2/(2k)(

n
2

) =
k − 1

k
,
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and

lim
n→∞

|Hn|(
n
3

) =
(k − 1)n3/(6k2)(

n
3

) =
k − 1

k2
.

Therefore, the sequence (Hn)∞n=1 realizes
(
(k − 1)/k, (k − 1)/k2

)
. So, g(T3, (k − 1)/k) ≥ (k −

1)/k2 for all integers k with k ≡ 1 or 3 (mod 6).

Next we prove the upper bound. Let (Hk)∞k=1 be a good sequence of cancellative 3-graphs

that realizes (x, y). Let xk = 2|∂Hk|/ (v(H))2 and yk = 6|Hk|/ (v(H))3 for k ≥ 1. Then, it

follows from Theorem 3.5.6 that

yk (v(Hk))3

6
≤

(
(v(Hk))2 − xk (v(Hk))2

)
xk (v(Hk))2/2

3v(Hk)
+ 3 (v(Hk))2 ,

which implies

yk ≤ xk(1− xk) +
18

v(Hk)
.

Letting k →∞, we obtain y ≤ x(1− x), and this completes the proof.

The idea of the proof of Theorem 3.5.6 is to first choose S ⊂ V (H) such that (∂H) [S] is

a clique. Then we apply the induction hypothesis to V (H) \ S. However, in order to do the

induction we need to prove a stronger statement which implies Theorem 3.5.6.

We will use G to denote the graph ∂H. Let U ⊂ V (H) and let GU = G[U ] and HU = H[U ].
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Theorem 3.5.7. Let H be a cancellative 3-graph on n vertices. Let U ⊂ V (H) be a set of size

m. Suppose that |GU | = xm2/2 for some real number x with 0 ≤ x ≤ (m− 1)/m. Then,

|HU | ≤
(1− x)x

6
m3 + 3m2.

In particular, letting U = V (H) in Theorem 3.5.7 we obtain

|H| ≤
(
n2 − 2|∂H|

)
|∂H|

3n
+ 3n2,

which is exactly Theorem 3.5.6.

The proof of Theorem 3.5.7 is by induction on m. Note that Theorem 3.5.7 holds trivially

for all m ≤ 20 since
(
m
3

)
≤ 3m2 for all m ≤ 20. Also, by Theorem 3.5.4,

|HU | ≤
|∂ (HU ) |3/2

3
√

3
≤ |GU |

3/2

3
√

3
=
x3/2

6
√

6
m3,

which is less than x(1− x)m3/6 + 3m2 when x ≤ 2/3. Therefore, Theorem 3.5.7 is true for all

x ≤ 2/3, and hence we may assume that x > 2/3 in the rest of the proof.

In the proof of Theorem 3.5.7 we need the following version of Turán’s theorem. The clique

number ω(G) of a graph G is the largest integer ω such that there is a copy of Kω in G. Turán’s

theorem implies that any n-vertex graph with no Kω+1 has at most (ω − 1)n2/(2ω) edges.

Theorem 3.5.8 ([241]). Let G be an n-vertex graph with at least xn2/2 edges for some real

number x ≥ 0. Then ω(G) ≥ d1/(1− x)e.
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Proof. Let ω = ω(G). By Turán’s theorem, xn2/2 ≤ (ω−1)n2/(2ω). Simplifying this inequality

we obtain ω ≥ 1/(1− x). Since ω is an integer, ω ≥ d1/(1− x)e.

The idea in the proof of Theorem 3.5.7 is to first apply Turán’s theorem on GU to find a

large clique, say on S, and then apply the induction hypothesis to T = U \ S to get an upper

bound for |HT |. In order to get an upper bound for |HU | we just need to apply Corollary 3.5.3

to HU to get an upper bound for |HU \ HT |.

Proof of Theorem 3.5.7. Suppose that GU contains a clique on ω vertices. We may assume

that ω < m since otherwise by Corollary 3.5.3, we are done. Choose S ⊂ U of size ω so that

GS ∼= Kω. Let T = U \ S. Let es denote the number of edges in GU that have nonempty

intersection with S. Let x′ = xm2−2es
(m−ω)2

.

First, notice a simple but crucial fact is that every vertex in T is adjacent to at most ω− 1

vertices in S, since otherwise there would be a copy of Kω+1 in GU , which contradicts the

definition of ω. Therefore,

es ≤ (ω − 1)(m− ω) +

(
ω

2

)
. (3.20)

Applying the induction hypothesis to T we obtain

|HT | ≤
x′(1− x′)

6
(m− ω)3 + 3(m− ω)2.
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On the other hand, Corollary 3.5.3 gives

|HU \ HT | ≤
∑
v∈S

d(v) ≤ |GU | =
x

2
m2.

Therefore,

|HU | = |HT |+ |HU \ HT | ≤
x′(1− x′)

6
(m− ω)3 + 3(m− ω)2 +

x

2
m2. (3.21)

Claim 3.5.9. For 2/3 ≤ x ≤ 1 and 0 ≤ x′ ≤ 1 we have

x(1− x)

6
m3 + 3m2 ≥ x′(1− x′)

6
(m− ω)3 + 3(m− ω)2 +

x

2
m2.

Proof. Notice that

(m− ω)2(x− x′) = x
(
(m− ω)2 −m2

)
+ 2es

Equation 3.20
≤ xω(ω − 2m) + (ω − 1)(2m− ω)

= (2m− ω) (ω(1− x)− 1) .

Consequently,

(m− ω)2
(
x′(1− x′)− x(1− x)

)
= (m− ω)2(x− x′)(x+ x′ − 1)

≤ (2m− ω) (ω(1− x)− 1)x. (3.22)
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Indeed, if x ≥ x′ this follows from the previous estimate and x + x′ − 1 ≤ x. If x < x′,

then x + x′ − 1 ≥ 1/3 and the left side of Equation 3.22 is negative, while the right side of

Equation 3.22 is nonnegative. Multiplying Equation 3.22 by m − ω and taking the identity

ω(m− ω)(2m− ω) = m3 − (n− ω)3 −m2ω into account we obtain

(m− ω)3
(
x′(1− x′)− x(1− x)

)
≤
(
m3 − (m− ω)3

)
x(1− x)−m2ωx(1− x)− x(m− ω)(2m− ω),

which due to ω(1− x) ≥ 1 implies

(m− ω)3x′(1− x′) ≤ m3x(1− x)− x
(
m2 + (m− ω)(2m− ω)

)
.

Adding 3xm2 on both sides and using

2m2 − (m− ω)(2m− ω) = 3mω − ω2 ≤ 18
(
m2 − (m− ω)2

)

we reach

(m− ω)3x′(1− x′) + 3xm2 ≤ m3x(1− x) + 18x
(
m2 − (m− ω)2

)
.

Due to x ≤ 1 this implies the claim.
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Finally, |HU | ≤ x(1 − x)m3/6 + 3m2 is an immediate consequence of Claim 3.5.9 and

Equation 3.21 and this completes the proof of the theorem.
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3.6 Hypergraphs without the expansion of cliques

In this section we consider the feasible region of hypergraphs without expansion of cliques.

First we will prove the following result, from which Theorem 3.1.21 can be easily obtained.

Theorem 3.6.1. Let ` ≥ r ≥ 2. Let H be a Kr`+1-free r-graph. Then

(
|H|(
`
r

))1/r

≤

(
|∂H|(
`

r−1

))1/(r−1)

.

In order to derive Theorem 3.1.21 from Theorem 3.6.1 we need an easy observation.

Observation 3.6.2. Let r ≥ 3 and H be an r-graph. If 0 ≤ i ≤ r − 2, then H is Kr`+1-free iff

∂iH is Kr−i
`+1-free. In particular, H is Kr`+1-free iff ∂r−2H is K`+1-free. If i ≤ −1, then H is

Kr`+1-free implies that ∂iH is Kr−i`+1-free.

Now we show how to prove Theorem 3.1.21 using Theorem 3.6.1.

Proof of Theorem 3.1.21. Fix r − ` ≤ i ≤ r − 2. Then by Observation 3.6.2, ∂iH is Kr−i`+1-free.

Since ∂ (∂iH) ⊂ ∂i+1H, it follows from Theorem 3.6.1 that

(
|∂iH|(
`
r−i
))1/(r−i)

≤

(
|∂(∂iH|)(

`
r−i−1

) )1/(r−i−1)

≤

(
|∂i+1H|(

`
r−i−1

))1/(r−i−1)

,

and this completes the proof.

To show that all inequalities in Theorem 3.1.21 are tight, consider the following construction.

Fix α ∈ [0, 1] and let Hn(α) be the vertex disjoint union of Tr(αn, `) and a set of (1 − α)n
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isolated vertices. It is clear that Hn(α) is Kr`+1-free. In order to keep the calculations simple,

let us assume that αn is an integer that is a multiple of `. For fixed `− r ≤ i ≤ r − 1,

|∂iHn(α)| =
(

`

r − i

)(αn
`

)r−i
,

and hence (
|∂iHn(α)|(

`
r−i
) ) 1

r−i

=
αn

`
.

Therefore, all inequalities in Theorem 3.1.21 are tight.

Notice that the construction above also proves the lower bound in Corollary 3.1.22 and we

omit the calculations here.

The proof of Theorem 3.6.1 uses some ideas in Fisher and Ryan’s proof [83]. However we

need to translate their proof into the language of hypergraphs, since an edge in ∂iH might not

be equivalent to a copy of Kr−i in ∂r−2H for −` ≤ i ≤ r − 3. Define the clique set KH of H as

KH =
{
A ⊂ V (H) : (∂r−2H)[A] ∼= K|A|

}
.

For every E ∈ ∂H let N(E) = {v ∈ V (H) : {v} ∪ E ∈ H}. Recall that σ(S) =
∑

v∈S d(v). We

first prove a lemma that will be used in the proof of Theorem 3.6.1.

Lemma 3.6.3.
∑

E∈∂H σ(E) ≤ (`−r+1)(r−1)
` |∂H|2.
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Proof. Let S ⊂ V (H). For every v ∈ V (H) we have d(v) =
∑

E∈∂H |N(E) ∩ {v}|. So,

σ(S) =
∑
v∈S

d(v) =
∑
v∈S

∑
E∈∂H

|N(E) ∩ {v}| =
∑
E∈∂H

|N(E) ∩ S|. (3.23)

On the other hand,

(σ(S))2 =

(∑
v∈S

d(v)

)2
Equation 3.14

≤ |S|
∑
v∈S

(d(v))2 = |S|
∑
v∈S

∑
E∈L(v)

d(v)

= |S|
∑
v∈S

∑
E∈∂H
v∈N(E)

d(v) = |S|
∑
E∈∂H

∑
v∈S∩N(E)

d(v)

= |S|
∑
E∈∂H

σ (N(E) ∩ S) ,

which implies

∑
E∈∂H

σ (N(E) ∩ S) ≥ (σ(S))2

|S|
. (3.24)

Now suppose that S ∈ KH. Since H is Kr`+1-free, |E| + |N(E) ∩ S| ≤ ` for all E ∈ ∂H. It

follows from Equation 3.23 that

σ(S) =
∑
T∈∂H

|N(T ) ∩ S| ≤ (`− r + 1)|∂H|. (3.25)
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Let z be the largest real number such that σ(R) ≤ (`− r+ 1)|∂H| − (`− |R|)z for all R ∈ KH.

Let R0 ∈ KH such that

σ(R0) = (`− r + 1)|∂H| − (`− |R0|)z. (3.26)

For every E ∈ ∂H, E ∪ (N(E) ∩R0) ∈ KH, therefore,

∑
E∈∂H

σ(E) =
∑
E∈∂H

(σ(E ∪ (N(E) ∩R0))− σ(N(E) ∩R0))

≤
∑
E∈∂H

((`− r + 1)|∂H| − (`− |E ∪ (N(E) ∩R0)|)z − σ(N(E) ∩R0))

≤
∑
E∈∂H

((`− r + 1) (|∂H| − z) + |N(E) ∩R0|z − σ(N(E) ∩R0))

= (`− r + 1)(|∂H| − z)|∂H|+ z
∑
E∈∂H

|N(E) ∩R0| −
∑
E∈∂H

σ(N(E) ∩R0)

Equation 3.24, Equation 3.25
≤ (`− r + 1)(|∂H| − z)|∂H|+ zσ(R0)− (σ(R0))2

|R0|
Equation 3.26

= (`− r + 1)(|∂H| − 2z)|∂H|+ z2`− ((`− r + 1)|∂H| − z`)2

|R0|
. (3.27)

Since |R0| ≤ `, we may plug |R0| = ` into Equation 3.27 and z will be cancelled in the calculation

and hence

∑
E∈∂H

σ(E) ≤ (`− r + 1)(r − 1)

`
|∂H|2.
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Now we are ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. We proceed by induction on r. The case r = 2 is just Turán’s theorem,

so we may assume that r ≥ 3.

For every v ∈ V (H) the link L(v) is a Kr−1
` -free (r − 1)-graph, therefore, by the induction

hypothesis,

d(v) ≤
(
`− 1

r − 1

)(
|∂L(v)|(
`−1
r−2

) ) r−1
r−2

. (3.28)

It follows that

|H| = 1

r

∑
v∈V (H)

d(v) =
1

r

∑
v∈V (H)

(d(v))
1
r−1 (d(v))

r−2
r−1

Equation 3.28
≤

(
`−1
r−1

) r−2
r−1

r
(
`−1
r−2

) ∑
v∈V (H)

(d(v))
1
r−1 |∂L(v)|. (3.29)

Similar to Equation 3.17, we have

∑
v∈V (H)

(d(v))
1
r−1 |∂L(v)| =

∑
E∈∂H

∑
v∈E

(d(v))
1
r−1

Equation 3.13
≤ ((r − 1)|∂H|)

r−2
r−1

( ∑
E∈∂H

∑
v∈E

d(v)

) 1
r−1

= ((r − 1)|∂H|)
r−2
r−1

( ∑
E∈∂H

σ(E)

) 1
r−1

Lemma 3.6.3
≤ (r − 1)

(
`− r + 1

`

) 1
r−1

|∂H|
r
r−1 . (3.30)
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It follows from Equation 3.29 and Equation 3.30 that

|H| ≤
(
`

r

)(
|∂H|(
`

r−1

)) r
r−1

.

Now we show how to prove Corollary 3.1.22 using Theorem 3.1.21.

Proof of Corollary 3.1.22. Let (Hk)∞k=1 be a good sequence of Kr`+1-free r-graphs that realizes

(x, y). Let xk = (r − 1)!|∂Hk|/ (v(Hk))r−1 and yk = r!|Hk|/ (v(Hk))r. First, we show that

projΩ(Kr`+1) = [0, (`)r−1/`
r−1].

It follows from Theorem 3.1.21 that

xk (v(Hk))r−1

(r − 1)!
≤
(

`

r − 1

)(
v(Hk)
`

)r−1

,

which implies xk ≤ (`)r−1/`
r−1. Letting k → ∞, we obtain x ≤ (`)r−1/`

r−1. Therefore,

projΩ(Kr`+1) ⊂ [0, (`)r−1/`
r−1]. On the other hand, (Tr(k, `))

∞
k=1 shows that (`)r−1/`

r−1 ∈

projΩ(Kr`+1) and it follows from Observation 3.1.5 that projΩ(Kr`+1) = [0, (`)r−1/`
r−1].

Next, we show the upper bound for g(Kr`+1, x). It follows from Theorem 3.1.21 that

(
yk (v(Hk))r

r!
(
`
r

) ) 1
r

≤

(
xk (v(Hk))r−1

(r − 1)!
(
`

r−1

) ) 1
r−1

,

which implies yk ≤ (` − r + 1) (xrk/(`)r)
1/(r−1). Letting k → ∞, we obtain y ≤ (` − r +

1) (xr/(`)r)
1/(r−1). Therefore, g(Kr`+1, x) ≤ (`− r + 1) (xr/(`)r)

1/(r−1) for all x ∈ projΩ(Kr`+1).
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The construction for the lower bound is exactly the same as the construction for Theo-

rem 3.1.21, and it shows that g(Kr`+1, x) ≥ (`− r + 1) (xr/(`)r)
1/(r−1) for all x ∈ projΩ(Kr`+1).

Therefore, g(Kr`+1, x) = (`− r + 1) (xr/(`)r)
1/(r−1) for all x ∈ projΩ(Kr`+1).

Let us present a lemma before proving Theorem 3.1.23.

Lemma 3.6.4. Let r ≥ 3 and F1,F2 be two families of r-graphs with F1 ⊂ F2. Suppose

that every n-vertex F1-free r-graph can be made F2-free by removing at most o(nr) edges, and

g(F2, x) is increasing on [0, c] for some c > 0. Then g(F1, x) = g(F2, x) on [0, c].

Proof. Since F1 ⊂ F2, it follows from Observation 3.3.2 that g(F2, x) ≤ g(F1, x) for all x ∈

projΩ(F2). So it suffices to show that g(F2, x) ≥ g(F1, x) for all x ∈ [0, c]. Let (x0, y0) ∈ Ω(F1)

with x0 ∈ [0, c] and y0 = g(F1, x0). By definition, there exists a sequence of F1-free r-graphs

(Hk)∞k=1 with limk→∞ d(∂Hk) = x0 and limk→∞ d(Hk) = y0.

For every k ≥ 1 let H′k be a subgraph of Hk that is F2-free and of maximum size, and let

x′k = d(∂H′k) and y′k = d(H′k). By the Bolzano–Weierstrass theorem, (x′k, y
′
k)
∞
k=1 contains a

convergent subsequence
(
x′tk , y

′
tk

)∞
k=1

. Let x′0 = limk→∞ x
′
tk

and y′0 = limk→∞ y
′
tk

, and it is easy

to see from the definition of H′k that x′0 ≤ x0 and y′0 ≤ y0. Since
(
H′tk

)∞
k=1

is a good sequence

of F2-free r-graphs that realizes (x′0, y
′
0), we obtain (x′0, y

′
0) ∈ Ω(F2).

By assumption, for every ε > 0 there exists n(ε) such that Hk can be made F2-free by

removing at most ε (v(Hk))r edges whenever v(Hk) ≥ n(ε). Since limk→∞ v(Hk) = ∞, there

exists k(ε) such that v(Hk) ≥ n(ε) for all k ≥ k(ε), and hence |H′k| ≥ |Hk| − ε (v(Hk))r for all
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k ≥ k(ε). Therefore, y′0 ≥ y0 − r!ε. Letting ε → 0, we obtain y′0 ≥ y0, and hence y′0 = y0.

Therefore, (x′0, y0) ∈ Ω(F2). By the assumption that g(F2) is increasing on [0, c], we obtain

g(F2, x0) ≥ g(F2, x
′
0) ≥ y0 = g(F1, x0).

Since x0 was chosen arbitrarily from [0, c], g(F2, x) ≥ g(F1, x) for all x ∈ [0, c], and this

completes the proof.

Now we prove Theorem 3.1.23 using Corollary 3.1.22.

Proof of Theorem 3.1.23. It was shown by Pikhurko (see the proof of Lemma 3 in [209]) that

every Hr
`+1-free r-graph on n-vertices can be made Kr`+1-free by removing at most o(nr) edges.

On the other hand, Corollary 3.1.22 shows that g(Kr`+1) is increasing on [0, (`)r−1/`
r−1]. So, it

follows from Lemma 3.6.4 that

g(Hr
`+1, x) = g(Kr`+1, x) = (`− r + 1)

(
xr

(`)r

) 1
r−1

for all x ∈ [0, (`)r−1/`
r−1].
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3.7 Countably many local maxima

In this section we prove Theorem 3.1.26. Let us present some preliminary results first.

3.7.1 Preliminaries

For a pair of vertices u, v ∈ V (H) the neighborhood of uv (we use uv as a shorthand for

{u, v}) is

NH(uv) = {w ∈ V (H) \ {u, v} : ∃A ∈ H such that {u, v, w} ⊂ A} ,

and the size of NH(uv) is called the codegree of uv. Denote by ∆2(H) and δ2(H) the maximum

codegree and the minimum codegree of H, respectively.

For a graph G the clique number ω(G) of G is the largest integer ω such that Kω ⊂ G.

S1

G[S1] ∼= K|S1|

S2

G[S2] ∼= K|S2|

St

G[St] ∼= K|St|

R

R = V \
(⋃

i∈[t] Si
)

Figure 12. A clique expansion of graph G.

Definition 3.7.1 (Clique expansion). Let t ≥ 1, κ ≥ 1 be positive integers and G be a graph

on the set V .
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(a) A (t+ 1)-tuple (S1, . . . , St, R), where S1, . . . , St are pairwise disjoint subsets of V (G) and

R = V \ (S1 ∪ · · · ∪ St), is a clique expansion of G if G[Si] is a complete graph for every

i ∈ [t] (see Figure 12).

(b) A clique expansion (S1, . . . , St, R) is maximal if the size of Si equals the clique number of

the induced subgraph of G on V \ (S1 ∪ · · · ∪ Si−1) for i ∈ [t].

(c) We say a clique expansion (S1, . . . , St, R) has a threshold κ if |Si| ≥ κ for every i ∈ [t]

but ω (G[R]) < κ.

The following observation is immediate from the definition.

Observation 3.7.2. Suppose that (S1, . . . , St, R) is a maximal clique expansion of G. Then

(a) |S1| ≥ · · · ≥ |St|, and

(b) every vertex in V \ (S1 ∪ · · · ∪ Si) is adjacent to at most |Si| − 1 vertices in Si for i ∈ [t].

We will need the following classical result due to Andrásfai, Erdős, and Sós [11].

Theorem 3.7.3 (Andrásfai–Erdős–Sós [11]). Let k ≥ 2 and n ≥ 1 be positive integers. Then

every Kk+1-free graph on n vertices with minimum degree greater than 3k−4
3k−1n is a k-partite

graph.

Sometimes it will be convenient to consider H and ∂H separately.

Definition 3.7.4 (Cancellative pair). Let G be a graph on V and H be a 3-graph on the same

vertex set V . We say the pair (G,H) is cancellative if ∂H ⊂ G and it does not contain three

distinct sets A,B ∈ H and C ∈ G ∪ H such that A4B ⊂ C. We call V the vertex set of the

pair (G,H).
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Let H be a cancellative 3-graph and U ⊂ V (H). Then it is easy to see that the pair

((∂H)[U ],H[U ]) is cancellative (note that (∂H)[U ] and ∂(H[U ]) are not necessarily the same).

Observation 3.7.5. Suppose that (G,H) is a cancellative pair. Then NH(uv) is an independent

set in G for every uv ∈ ∂H.

The following results concerning cancellative pairs were proved in Section 3.5.

Theorem 3.7.6. Let m ≥ 1 be an integer and (G,H) be a cancellative pair on a set V of size

m. Suppose that |G| = xm2/2 for some real number x ∈ [0, 1]. Then

|H| ≤ x(1− x)

6
m3 + 3m2.

Lemma 3.7.7. Let (G,H) be a cancellative pair on a set V . Suppose that G[S] is a complete

graph for some set S ⊂ V . Then ∑
v∈S

dH(v) ≤ |∂H|.

Lemma 3.7.7 yields the following result.

Lemma 3.7.8. Let t ≥ 1 be a positive integer and (G,H) be a cancellative pair on n vertices.

Suppose that (S1, . . . , St, R) is a clique expansion of G. Then

|H| ≤ |H[R]|+ t|∂H|.
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Proof. Notice that every edge in H either contains at least one vertex in S1 ∪ · · · ∪ St or is

completely contained in R. So,

|H| ≤ |H[R]|+
∑
i∈[t]

∑
v∈Si

dH(v).

For every i ∈ [t] sinceG[Si] is a complete graph, it follows from Lemma 3.7.7 that
∑

v∈Si dH(v) ≤

|∂H|. Therefore, |H| ≤ |H[R]|+ t|∂H|.

3.7.2 Proof of Theorem 3.1.26

In this section we prove the following statement that implies Theorem 3.1.26.

Theorem 3.7.9. Let k ∈ 6N + {1, 3} and k ≥ 3. For every δ > 0 there exists an ε > 0 and

n0 such that the following holds for all n ≥ n0. Suppose that H is a cancellative 3-graph on n

vertices with

|∂H| ≥ (1− ε)k − 1

2k
n2 and |H| ≥ (1− ε)k − 1

6k2
n3. (3.31)

Then, H is S-colorable for some S ∈ STS(k) after removing at most δn3 edges.

Remarks.

(a) Our proof shows that δ = 20000k6ε1/2 is sufficient for Theorem 3.7.9.

(b) It is easy to see from Corollary 3.1.18 (also see Figure 6) that if H satisfies Equation 3.31,

then the Euclidean distance between (d(∂H), d(H)) and
(
k−1
k , k−1

k2

)
is bounded by some
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constant ζ = ζ(ε) that is linear in ε, and vice versa (we omit the detailed calculations

here).

The technical parts of the proof of Theorem 3.1.26 are contained in proofs of Lemma 3.7.10

and Lemma 3.7.11. In Lemma 3.7.10 we will show that every 3-graph H that satisfies assump-

tions in Theorem 3.7.9 contains a small set U of vertices such that the induced subgraph of

∂H on V (H) \ U is k-partite. In Lemma 3.7.11 we will show that if a cancellative pair (G,H)

satisfies similar assumptions in Theorem 3.7.9 and G is k-partite, then H is S-colorable for

some S ∈ STS(k) after removing very few number of edges.

Lemma 3.7.10. Let k ∈ 6N+{1, 3} and k ≥ 3. There exists an absolute constant c1 = c1(k) > 0

such that for every constant ε satisfying 0 ≤ ε ≤ c1 there exists n0 = n1(k, ε) such that the

following holds for all n ≥ n1. Suppose that H is a cancellative 3-graph on n vertices that

satisfies Equation 3.31. Then there exists a set U ⊂ V (H) of size at most 130εk4n such that

the induced subgraph of ∂H on V (H) \ U is k-partite.

Lemma 3.7.11. Let k ∈ 6N+{1, 3} and k ≥ 3. There exists an absolute constant c2 = c2(k) > 0

such that for every constant ε′ satisfying 0 ≤ ε′ ≤ c2 there exists n2 = n2(k, ε′) such that the

following holds for all n ≥ n2. Suppose that (G,H) is a cancellative pair on a set V of size n,

G is k-partite,

|G| ≥ (1− ε′)k − 1

2k
n2 and |H| ≥ (1− ε′)k − 1

6k2
n3. (3.32)

Then, H is S-colorable for some S ∈ STS(k) after removing at most 600(ε′)1/2k3n3 edges.
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First let us show that Lemma 3.7.10 and Lemma 3.7.11 imply Theorem 3.7.9.

Proof of Theorem 3.7.9 assuming Lemmas 3.7.10 and 3.7.11. Let ε > 0 be a sufficiently small

constant such that ε′ = 800εk6n satisfies ε′ ≤ c2. Let δ = 20000ε1/2k6. Suppose that H is a

cancellative 3-graph on a set V of n vertices and H satisfies assumptions in Theorem 3.7.9. By

Lemma 3.7.10, there exists a set U ⊂ V of size at most 130εk4n such that the induced subgraph

of ∂H on V \ U is k-partite. Let G′ = (∂H)[V \ U ] and H′ = H[V \ U ]. Then it is easy to see

that (G′,H′) is a cancellative pair, and moreover,

|G′| ≥ |∂H| − |U | · n ≥ (1− ε)k − 1

2k
n2 − 130εk4n2 ≥ (1− ε′)k − 1

2k
n2,

and

|H′| ≥ |H| − |U | · n2 ≥ (1− ε)k − 1

6k2
n3 − 130εk4n3 ≥ (1− ε′)k − 1

6k2
n3.

Therefore, by Lemma 3.7.11, H′ contains subgraph H′′ of size at least |H′|−600(ε′)1/2k3n3 such

thatH′′ is S-colorable for some S ∈ STS(k). Note that |H|−|H′′| ≤ 600(ε′)1/2k3n3+130εk4n3 <

20000ε1/2k6n3. This completes the proof of Theorem 3.7.9.

3.7.3 Proof of Lemma 3.7.10

Proof of Lemma 3.7.10. Fix k ∈ 6N + {1, 3} and k ≥ 3. Let ε > 0 be a sufficiently small

constant and n be a sufficiently large integer. Let H be a cancellative 3-graph on n vertices

and assume that H satisfies assumptions in Lemma 3.7.10.



99

Claim 3.7.12. We have |∂H| ≤
(
k−1
2k + ε

)
n2.

Proof. Let x = 2|∂H|/n2 and suppose to the contrary that x ≥ ((k − 1)/k + 2ε). Then it

follows from Theorem 3.7.6 that

|H| ≤ (1− x)x

6
n3 + 3n2 ≤ 1

6

(
k − 1

k
+ 2ε

)(
1

k
− 2ε

)
n3 + 3n2

≤ k − 1

6k2

(
1− 2k(k − 2)

k − 1
ε

)
n3 + 3n2 < (1− ε) k − 1

6k2
,

which contradicts Equation 3.31.

Claim 3.7.13. The clique number ω (∂H) of ∂H satisfies ω (∂H) ≤ 10kεn.

Proof. Suppose to the contrary that there exists a set S ⊂ V (H) of size d10kεne such the the

induced subgraph of ∂H on S is complete. To keep the calculations simple, let us assume that

10kεn is an integer. Let a = 10kε, R = V (H) \ S, and e = |∂H|. Let es be the number of

edges in ∂H that have at least one vertex in S, and set x′ = (xn2 − es)/(n− an)2. Notice that

es ≤ an2.

It follows from Lemma 3.7.7 and Theorem 3.7.6 that

|H| ≤ |H[T ]|+
∑
v∈S

d(v)

≤ (1− x′)x′

6
(1− a)3n3 + 3(1− a)2n2 + e

=
((1− a)2n2 − 2(e− es))(e− es)

3(1− a)n
+ 3(1− a)2n2 + e

=
−2e2

s +
(
4e− (1− a)2n2

)
es + (1− a)2n2e− 2e2

3(1− a)n
+ 3(1− a)2n2 + e. (3.33)
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Since −2e2
s +

(
4e− (1− a)2n2

)
es is increasing in es when es ≤ e− (1− a)2n2/4 and

e− (1− a)2n2

4
> (1− ε)(k − 1)n2

2k
− (1− a)2n2

4

≥ (1− ε)n
2

3
− (1− a)2n2

4
> an2,

we may substitute es = an2 into Equation 3.33 and obtain

|H| ≤
−2e2 +

(
(1 + a)2n2 + 3(1− a)n

)
e− (1 + a2)an4

3(1− a)n
+ 3(1− a)2n2. (3.34)

Since −2e2 +
(
(1 + a)2n2 + 3(1− a)n

)
e is decreasing in e when e ≥ (1 + a)2n2/4 + 3(1− a)n/4

and

(1 + a)2n2

4
+

3(1− a)n

4
<
n2

4
+

n2

100
< (1− ε)n

2

3
< (1− ε)(k − 1)n2

2k
,

we may substitute e = (1− ε)(k − 1)n2/(2k) into Equation 3.34 and obtain

|H| < ((1− ε)(k − 1)− 2ka)(1 + ka2 + (k − 1)ε)

6(1− a)k2
n3 +

(
(1− ε)(k − 1)

2k
+ 3(1− a)2

)
n2

≤ ((k − 1)(1− a)− ka) (1 + kε)

6(1− a)k2
n3 + 4n2

≤ k − 1

6k2
n3 +

ε

6
n3 − a

6k
n3 + 4n2 <

k − 1

6k2
n3 − εn3,

which contradicts Equation 3.31.
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Claim 3.7.14. Suppose that (S1, . . . , St, R) is a maximal clique expansion of ∂H with |St| ≥

k + 1 for some positive integer t. Then
∑

i∈[t] |Si| < 30k2εn.

Proof. Suppose to the contrary that there exist some positive integer t and an maximal clique

expansion (S1, . . . , St, R) of ∂H with |St| ≥ k + 1 such that
∑

i∈[t] |Si| ≥ 30k2εn. Let Σt =∑
i∈[t] |Si|.

Let β = 20k2ε. By Claim 3.7.13, |Si| < 10kεn for i ∈ [t]. So there exists t′ ≤ t such that

βn − 10kεn ≤ Wt′ ≤ βn + 10kεn < 30k2εn. Without loss of generality we may assume that

Wt = dβne (since otherwise we may replace Wt by Wt′ , and the exact value of β is not crucial

in the proof as long as 20k2 ≤ β ≤ 30k2). To keep the calculations simple, let us assume that

βn is an integer.

Let Et denote the number of edges in ∂H that have at least one vertex in S1 ∪ · · · ∪ St and

let x′ = 2(e− Et)/(n− Σt)
2. Notice from Observation 3.7.2 (b) that

Et ≤
∑
i∈[t]

(|Si| − 1)n = (Σt − t)n.

It follows from Theorem 3.7.6 and Lemma 3.7.8 that

|H| ≤ x′(1− x′)
6

(n− Σt)
3 + 3(n− Σt)

2 + te

=
−2E2

t +
(
4e− (n− Σt)

2
)
Et + (n− Σt)

2e− 2e2

3(n− Σt)
+ 3(n− Σt)

2 + te. (3.35)
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Similar to the proof of Claim 3.7.13, we may substitute Et = (Σt − t)n into Equation 3.35 and

obtain

|H| ≤
−2n2t2 +

(
n(n+ Σt)

2 − (n+ 3Σt)e
)
t− (e− Σtn)(2e− n2 − Σ2

t )

3(n− Σt)
+ 3(n− Σt)

2. (3.36)

Since |Si| ≥ k+1 for i ∈ [t], we have t ≤Wt/(k+1). Since −2n2t2 +
(
n(n+ Σt)

2 − (n+ 3Σt)e
)
t

is increasing in t when

t ≤
(
n(n+ Σt)

2 − (n+ 3Σt)e
)
/(4n2)

and
(
n(n+ Σt)

2 − (n+ 3Σt)e
)
/(4n2) ≥ Σt/(k + 1), we may substitute t = Σt/(k + 1) into E-

quation 3.36 and obtain

|H| ≤
(k + 1)

(
−2(k + 1)e2 +

(
(k + 1)n2 + (2k + 1)Σtn+ (k − 2)Σ2

t

)
e
)

3(k + 1)2(n− Σt)

−
(
(k + 1)(n2 + Σ2

t )− 2Σtn
)
kΣtn

3(k + 1)2(n− Σt)
+ 3(n− Σt)

2. (3.37)

Since −2(k + 1)2e2 + (k + 1)
(
(k + 1)n2 + (2k + 1)Σtn+ (k − 2)Σ2

t

)
e is decreasing in e when

e ≥ (k + 1)n2 + (2k + 1)Σtn+ (k − 2)Σ2
t

4(k + 1)
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and

(1− ε)k − 1

2k
n2 ≥ (k + 1)n2 + (2k + 1)Σtn+ (k − 2)Σ2

t

4(k + 1)
,

we may substitute e = (1− ε)(k − 1)n2/(2k) into Equation 3.37 and obtain

|H| ≤ (1− ε)k − 1

6k2
n3 − (k + 1)2Σtn

3 − k(k3 + 2k2 − k + 2)Σ2
tn

2 + 2k3(k + 1)Σ3
tn

6k2(k + 1)2(n− Σt)

+ εn3 + 3(n− Σt)
2

< (1− ε)k − 1

6k2
n3 − (k + 1)2Σtn

3

12k2(k + 1)2n
+ +εn3 + 3(n− Σt)

2

< (1− ε)k − 1

6k2
n3 − βn3

12k2
+ +εn3 + 3(n− Σt)

2 < (1− ε)k − 1

6k2
n3

contradicting Equation 3.31. Here we used β = 20k2ε.

Now let (S1, . . . , St, R) be a maximal clique expansion of ∂H with threshold k+ 1 for some

positive integer t. Let ñ = |R| and G = (∂H)[R]. Notice that by the definition of threshold, G

is Kk+1-free. It follows from Claim 3.7.14 that ñ = n−
∑

i∈[t] |Si| ≤ n− 30k2εn and

|G| > |∂H| − 30k2εn · n ≥ (1− ε) k − 1

2k
n2 − 30k2εn2 >

k − 1

2k
n2 − 31k2εn2. (3.38)

Define

Z(G) =

{
v ∈ R : dG(v) ≤ 3k − 4

3k − 1
ñ+ 100k4εñ

}
.
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Claim 3.7.15. We have |Z(G)| < 100k4εñ.

Proof. Let z = |Z(G)| and suppose to the contrary that z ≥ 100k4εñ. To keep the calculations

simple, let us assume that 100k4εñ is an integer. We may assume that z = 100k4εñ since

otherwise we replace Z(G) by a subset of size 100k4εñ. Let R′ = R \ Z(G). Since G[R′] is

Kk+1-free, by Turán’s theorem |G[R′]| ≤ k−1
2k (ñ− z)2. Therefore,

|G| ≤ k − 1

2k
(ñ− z)2 +

(
3k − 4

3k − 1
ñ+ 100k4εñ

)
z

≤ k − 1

2k
ñ2 − 1

3k2 − k
zñ+ z2 + 100k4εñz

<
k − 1

2k
ñ2 − 100k4ε

3k2 − k
ñ2 + 2

(
100k4εñ

)2
<
k − 1

2k
ñ2 − 31k2εñ2,

which contradicts Equation 3.38.

Let U = S1 ∪ · · · ∪St ∪Z(G). Then by Claims 3.7.14 and 3.7.15, |U | ≤ 30k2εn+ 100k4εñ <

130k4εn. On the other hand, by Equation 3.38 and Claim 3.7.15 the induced subgraph of G on

V (H) \ U has minimum degree at least

3k − 4

3k − 1
ñ+ 100k4εñ− |Z(G)|ñ > 3k − 4

3k − 1
ñ.

So by Theorem 3.7.3, the induced subgraph G[R \ Z(G)] is k-partite, that is, the induced

subgraph of ∂H on V (H) \ U is k-partite. This completes the proof of Lemma 3.7.10.
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3.7.4 Proof of Lemma 3.7.11

We prove Lemma 3.7.11 in this section. The following observation about the Steiner triple

systems will be helpful to understand the proof (starting from Claim 3.7.23) of Lemma 3.7.11.

Observation 3.7.16. Suppose that H is S-colorable for some S ∈ STS(k). Then for every

v ∈ V (H) the link LH(v) consists of (k − 1)/2 pairwise vertices disjoint complete graphs.

Proof of Lemma 3.7.11. Fix k ∈ 6N + {1, 3} and k ≥ 3. Let ε′ > 0 be a sufficiently small

constant and n be a sufficiently large integer. Let (G,H) be a cancellative pair on n vertices

that satisfies assumptions in Lemma 3.7.11. Let V = V (G) = V (H) and suppose that V =

V1 ∪ · · · ∪ Vk is a partition such that every edge in G contains at most one vertex from each Vi.

Let Ĝ denote the complete k-partite graph with k-parts V1, . . . , Vk. Let MG = Ĝ \G and call

members in MG missing edges of G. Notice that

|MG| =
∑

1≤i<j≤k
|Vi||Vj | − |G| ≤

k − 1

2k
n2 −

(
1− ε′

) k − 1

2k
n2 =

k − 1

2k
ε′n2 <

ε′n2

2
. (3.39)

The following claim can be proved easily using the following inequality (see [171])

∑
1≤i<j≤k

xixj +
1

2

∑
i∈[k]

(
xi −

1

k

)2

≤ k − 1

2k
,

where x1, . . . , xk ∈ [0, 1] are real numbers satisfying x1 + · · ·+ xk = 1.

Claim 3.7.17. We have ||Vi| − n/k| ≤ 2(ε′)1/2n for every i ∈ [k].

The next claim gives an upper bound for the maximum codegree of H.
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Claim 3.7.18. We have ∆2(H) ≤ n/k + 2(ε′)1/2n+ kε′n ≤ n/k + 3(ε′)1/2n.

Proof. Suppose to the contrary that there exists uv ∈ ∂H with NH(uv) > n/k+2(ε′)1/2n+kεn.

Let V ′i = NH(uv) ∩ Vi and xi = |V ′i | for i ∈ [k]. By Observation 3.7.5, NH(uv) is independent

in G. Therefore, every pair {ui, uj} with ui ∈ V ′i , uj ∈ V ′j , and i 6= j, is a member in MG. In

particular,
∑

1≤i<j≤k xixj ≤ |MG|. Claim 3.7.17 implies that xi ≤ n/k + 2(ε′)1/2n for i ∈ [k],

which combined with
∑

i∈[k] xi = |NH(uv)| ≥ n/k + 2(ε′)1/2n+ kε′n imply that

∑
1≤i<j≤k

xixj ≥
(n
k

+ 2(ε′)1/2n
)(n

k
+ 2(ε′)1/2n+ kε′n−

(n
k

+ 2(ε′)1/2n
))
≥ ε′n2 > |MG|

contradicting Equation 3.39.

Define the set of edges in G with small codegree in H as

Gs =
{
uv ∈ G : |NH(uv)| ≤ n

2k

}
.

Claim 3.7.19. We have |Gs| < 4k(ε′)1/2n2.

Proof. Suppose to the contrary that |Gs| ≥ 4k(ε′)1/2n2. Then it follows from
∑

uv∈G |NH(uv)| ≥

3|H|, Claims 3.7.12 and 3.7.18 that

3|H| ≤ n

2k
|Gs|+

(n
k

+ 3(ε′)1/2n
)

(|G| − |Gs|)

≤
(n
k

+ 3(ε′)1/2n
)
|G| − n

2k
|Gs|

≤
(n
k

+ 3(ε′)1/2n
)(k − 1

2k
+ ε′

)
n2 − 2(ε′)1/2n3 ≤ k − 1

2k2
− (ε′)1/2

4
n3
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contradicting Equation 3.32.

The following claim shows that for every uv ∈ G most vertices in NH(uv) will be contained

in some Vi. It will be used intensively in the remaining part of the proof.

Claim 3.7.20. For every uv ∈ G and every i ∈ [k] either

|NH(uv) ∩ Vi| <
ε′n2

|NH(uv)|
or |NH(uv) ∩ Vi| > |NH(uv)| − ε′n2

|NH(uv)|
.

In particular, if |NH(uv)| > (ε′k)1/2n, then there exists a unique i ∈ [k] such that |NH(uv)∩Vi| >

|NH(uv)| − ε′n2/|NH(uv)|.

Proof. Fix uv ∈ G and i ∈ [k]. We may assume that |NH(uv)| ≥ (2ε′)1/2n since otherwise we

would have

ε′n2

|NH(uv)|
≥ |NH(uv)| − ε′n2

|NH(uv)|
,

and there is nothing to prove.

Suppose that there exists a set Vi contradicting the assertion of Claim 3.7.20. Let α =

|NH(uv)| and β = |NH(uv) ∩ Vi|. Then similar to the proof of Claim 3.7.18 we obtain

|MG| ≥ β(α− β) ≥ ε′n2

α

(
α− ε′n2

α

)
= ε′n2 −

(
ε′n2

α

)2

≥ ε′

2
n2,

which contradicts Equation 3.39.
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Now, suppose that |NH(uv)| > (ε′k)1/2n. Since

k × ε′n2

|NH(uv)|
<

ε′kn2

(ε′k)1/2n
= (ε′k)1/2n < |NH(uv)|,

there exists i ∈ [k] such that |NH(uv) ∩ Vi| > |NH(uv)| − ε′n2/|NH(uv)|. Since

|NH(uv)| − ε′n2

|NH(uv)|
> |NH(uv)| − ε′n2

(ε′k)1/2n
= |NH(uv)| − (ε′)1/2

k1/2
n >

|NH(uv)|
2

,

such i is unique.

Claim 3.7.21. We have ∆(H) < k−1
2k2

n2 + 3(ε′)1/2n2.

Proof. Fix v ∈ V and it suffices to show that dH(v) < k−1
2k2

n2 + 3(ε′)1/2n2. Without loss of

generality, we may assume that v ∈ V1. For every vertex w ∈ NH(v) ⊂
⋃k
i=2 Vi let dv(w) denote

the degree of w in the link graph LH(v). It follows from Claim 3.7.18 that dv(w) = |NH(vw)| <

n/k + 3(ε′)1/2n. Therefore, by Claim 3.7.17,

dH(v) = |LH(v)| = 1

2

∑
w∈
⋃k
i=2 Vi

dv(w) <
1

2
(k − 1)

(n
k

+ 2(ε′)1/2n
)(n

k
+ 3(ε′)1/2n

)

<
k − 1

2k2
n2 + 3(ε′)1/2n2.
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Define the set of vertices with small degree in H as

Vs =

{
v ∈ V : dH(v) <

k − 1

2k2
n2 − 18(ε′)1/2kn2

}
.

Claim 3.7.22. We have |Vs| < n
6k .

Proof. Suppose to the contrary that |Vs| ≥ n
6k . Then by Claim 3.7.21, we have

3|H| =
∑
v∈V

dH(v) ≤
(
k − 1

2k2
n2 + 3(ε′)1/2n2

)(
n− n

6k

)
+

(
k − 1

2k2
n2 − 18(ε′)1/2kn2

)
n

6k

≤
(
k − 1

2k2
+ 3(ε′)1/2

)
n3 −

(
18(ε′)1/2k + 3(ε′)1/2

) n3

6k

≤ k − 1

2k2
n3 − (ε′)1/2

2k
n3

contradicting Equation 3.32.

First we show that if v ∈ V \ Vs, then the structure of LH(v) is close to what we expect to

see in a blowup of Steiner triple systems on k vertices.

Claim 3.7.23. For every v ∈ V \ Vs there exists a subgraph of LH(v) of size at least dH(v)−

243(ε′)1/2k3n2 that consists of (k − 1)/2 pairwise vertex disjoipnt bipartite graphs.
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Proof. Fix v ∈ V \ Vs and without loss of generality we may assume that v ∈ V1. Note that

LH(v) is a graph on NH(v) ⊂
⋃k
i=2 Vi. For every u ∈ NH(v) let dv(u) denote the degree of u in

the link LH(v). Define the set of vertices with small degree in LH(v) as

Ns =

{
u ∈

k⋃
i=2

Vi : dv(u) ≤ n

k
− 240(ε′)1/2k2n

}
.

We claim that |Ns| ≤ n
6k since otherwise we would have

2|LH| =
∑

v∈V \V1

dv(w)

≤
(n
k

+ 3(ε′)1/2n
)

(|V \ V1| − |Ns|) +
(n
k
− 240(ε′)1/2k2n

)
|Ns|

≤
(n
k

+ 3(ε′)1/2n
)(k − 1

k
n+ 2(ε′)1/2n

)
−
(

3(ε′)1/2n+ 240(ε′)1/2kn
) n

6k

<
k − 1

k
n2 − 37(ε′)1/2kn2,

which contradicts the assumption that v ∈ V \Vs. Therefore, by Claim 3.7.17, for every i ∈ [2, k]

we have

|Vi \Ns| >
(n
k
− 2(ε′)1/2n

)
− n

6k
>

2n

3k
. (3.40)
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Fix i ∈ [2, k] and a vertex u ∈ Vi \Ns. By Claim 3.7.20, there exists a unique ψ(u, i) ∈ [2, k],

ψ(u, i) 6= i, such that

|NH(uv) ∩ Vψ(u,i)| > |NH(uv)| − ε′n2

|NH(uv)|
= dv(u)− ε′n2

dv(u)

>
(n
k
− 240(ε′)1/2k2n

)
− ε′n2

n/(2k)

>
n

k
− 241(ε′)1/2k2n.

Since ψ(u, i) ∈ [2, k] for every u ∈ Vi \ Ns, it follows from Equation 3.40 and the Pigeonhole

principle that there exists a set Ui ⊂ Vi\Bv with |Ui| > 2n/(3k(k−2)) such that ψ(u, i) = ψ(u′, i)

for every pair u, u′ ∈ Ui. We abuse notation by letting ψ(i) = ψ(u, i) for u ∈ Ui.

Define the bipartite graph Gi,ψ(i) as

Gi,ψ(i) =
{
uw ∈ LH(v) : u ∈ Ui, w ∈ Vψ(i)

}
,

and notice that

|Gi,ψ(i)| > |Ui|
(n
k
− 241(ε′)1/2k2n

)
. (3.41)

Let

V ′ψ(i) =
{
w ∈ Vi′ : dGi,ψ(i)

(w) > |Ui|/2 > n/(3k(k − 2))
}
.
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Then it follows from
∑

w∈Ui dGi,ψ(i)
(w) = |Gi,ψ(i)| =

∑
w∈Vψ(i)

dGi,ψ(i)
(w) that

|Ui|
(n
k
− 241(ε′)1/2k2n

)
< |V ′ψ(i)||Ui|+

(
|Vψ(i)| − |V ′ψ(i)|

) |Ui|
2

=
|Ui|
2

(
Vψ(i) + V ′ψ(i)

)
,

which with Claim 3.7.17 imply that

|V ′ψ(i)| > 2
(n
k
− 241(ε′)1/2k2n

)
− |V ′ψ(i)|

> 2
(n
k
− 241(ε′)1/2k2n

)
−
(n
k

+ 2(ε′)1/2n
)
>
n

k
− 242(ε′)1/2k2n.

For every w ∈ V ′ψ(i) since

|NH(vw) ∩ Vi| ≥ dGi,ψ(w) >
n

3k(k − 2)
>

ε′n2

|NH(vw)|
,

it follows from Claim 3.7.20 that, in fact,

|NH(vw) ∩ Vi| > |NH(vw)| − ε′n2

|NH(vw)|
> |NH(vw)| − ε′n2

n/(3k(k − 2))

> |NH(vw)| − 3ε′k2n.

Consequently, ψ(w,ψ(i)) = i for every w ∈ V ′ψ(i), and we abuse notation by writing it as

ψ2(i) = i.

Repeating the argument above we obtain a set V ′i ⊂ Vi of size at least n/k − 242(ε′)1/2k2n

such that |NH(vw) ∩ Vi| ≥ |NH(vw)| − 3ε′k2n for every w ∈ V ′i .
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View ψ as a map from [2, k] to [2, k]. Then due to ψ2(i) = i for i ∈ [2, k] the map ψ defines

a perfect matching, namely {{i, ψ(i)} : i ∈ [2, k]} (note that {i, ψ(i)} and {ψ(i), ψ(ψ(i))} are

the same), on [2, k].

To keep the notations simple, let us assume that ψ(i) = (k− 1)/2 + i for 2 ≤ i ≤ (k+ 1)/2.

Then the argument above implies that the number of edges in LH(v) that are not contained in

the union of the induced bipartite subgraphs
⋃(k+1)/2
i=2 LH(v)[Vi, Vψ(i)] is at most

(k+1)/2∑
i=2

(
3ε′k2n

(
|V ′i |+ |V ′ψ(i)|

)
+ n

(
|Vi \ V ′i |+ |Vψ(i) \ V ′ψ(i)|

))
≤ k − 1

2

(
3ε′k2n2 + 2

(
242(ε′)1/2k2n+ 2(ε′)1/2n

)
n
)
≤ 243(ε′)1/2k3n2.

The proof of Claim 3.7.23 implies that for every i ∈ [k] and every v ∈ Vi \ Vs there is a

bijection ψv : [k] \ {i} → [k] \ {i} with ψ2
v(j) = j for every j ∈ [k] \ {i} such that all but at

most 243(ε′)1/2k3n2 edges in LH(v) is contained in the union of the induced bipartite subgraphs⋃
j∈[k]\{i} LH(v)[Vj , Vψv(j)].

Now fix i ∈ [k] and without loss of generality we may assume that i = 1. By the Pigeonhole

principle, there exists a set W1 ⊂ V1 \Vs of size at least |V1 \Vs|/(k−1)! > n/(2k!) (here (k−1)!

is an upper bound for the number of bijections between [2, k] and [2, k]) such that ψv ≡ ψv′

for every pair v, v′ ∈ W1. To keep the notations simple, let ψ1 be the bijection that satisfies

ψ1 ≡ ψv for v ∈W1, and further assume that ψ1(i) = (k − 1)/2 + i for 2 ≤ i ≤ (k + 1)/2.
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Define an auxiliary bipartite graph M with two parts P1 = W1 and P2 =
⋃(k+1)/2
i=2 Vi×Vψ1(i)

such that a pair {v, (u,w)} is an edge in M if and only if {u,w} ∈ LH(v). It follows from

Claim 3.7.23 that for every v ∈ P1 we have

dM (v) ≥ dH(v)− 243(ε′)1/2k3n2 >

(
k − 1

2k2
n2 − 18(ε′)1/2kn2

)
− 243(ε′)1/2k3n2

>
k − 1

2k2
n2 − 270(ε′)1/2k3n2.

On the other hand, notice from Claim 3.7.17 that

|P2| ≤
k − 1

2

(n
k

+ 2(ε′)1/2n
)2

<
k − 1

2k2
n2 + 2(ε′)1/2n2.

Let P ′2 denote the set of vertices in P2 that have degree at least |P1|/2 in M . Then it follows

from
∑

v∈P1
dM (v) = |G| =

∑
e∈P2

dM (e) that

|P1|
(
k − 1

2k2
n2 − 270(ε′)1/2k3n2

)
≤ |P ′2||P1|+

(
|P2| − |P ′2|

) P1

2
=
|P1|

2

(
|P2|+ |P ′2|

)
,

which implies that

|P ′2| ≥ 2

(
k − 1

2k2
n2 − 270(ε′)1/2k3n2

)
− |P2|

> 2

(
k − 1

2k2
n2 − 270(ε′)1/2k3n2

)
−
(
k − 1

2k2
n2 + 2(ε′)1/2n2

)
>
k − 1

2k2
n2 − 541(ε′)1/2k3n2.
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For a pair (u,w) ∈ P ′2 since

|NH(uw) ∩ V1| ≥ |NH(uw) ∩W1| ≥ dM ((u,w)) ≥ |W1|
2
≥ n

4k!
,

it follows from Claim 3.7.20 that, in fact,

|NH(uw) ∩ V1| ≥ |NH(uw)| − ε′n2

|NH(uw)|
≥ |NH(uw)| − ε′n2

n/(4k!)
≥ |NH(uw)| − 4ε′k!n.

Let

S = {{i, j, ψi(j)} : i ∈ [k] and j ∈ [k] \ {i}}

(every edge in S appeared six times in the definition above but we only keep one of them).

Notice that S is a Steiner triple system on [k]. Let Ŝ be the blowup of S obtained by replacing

each vertex i by the set Vi and replacing each edge by a corresponding complete 3-partite

3-graph. Then the argument above implies that one can delete at most

k ×
(
|P2 \ P ′2| × n+ |P ′2| × 4ε′k!n

)
≤ k ×

((
2ε1/2n+ 541(ε′)1/2k3n2

)
× n+

(
k − 1

2k2
n2 − 541(ε′)1/2k3n2

)
× 4ε′k!n

)
≤ 600(ε′)1/2k3n3,

to transform H into a subgraph of Ŝ. This completes the proof of Lemma 3.7.11.
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3.7.5 Proof of Theorem 3.1.28

In this section we prove the following statement which implies Theorem 3.1.28.

Theorem 3.7.24. There exists an absolute constant c3 > 0 such that for every constant ε

satisfying 0 ≤ ε ≤ c3 there exists n0 such that the following holds for all n ≥ n0. Every

cancellative 3-graph H on n vertices with |∂H| = (1− ε)k−1
2k n

2 satisfies |H| ≤ k−1
6k2

n3− k−1
4k2

εn3 +

O(ε3/2n3).

Remarks.

(a) If ε > 0 is sufficiently small, then |H| ≤ k−1
6k2

n3 − k−1
4k2

εn3 + O(ε3/2n3) < k−1
6k2

n3 − k−1
6k2

εn3.

This shows that g(T3, (k−1)/k− ε) ≤ (k−1)/k2− ε(k−1)/k2 for sufficiently small ε > 0.

(b) The other part of Theorem 3.1.28, namely g(T3, (k − 1)/k + ε) ≤ (k − 1)/k2 − δ, follows

from Corollary 3.1.18 and the fact that x(1−x) is decreasing when x > 1/2 (see Figure 6).

Before proving Theorem 3.1.28 let us present some useful lemmas.

Lemma 3.7.25. Let k ∈ 6N + {1, 3} and k ≥ 3. Let ε > 0 be a sufficiently small constant and

n be a sufficiently large constant. Suppose that H is a 3-graph on n vertices with |∂H| = (1 −

ε)k−1
2k n

2, and H is a blowup of S for some S ∈ STS(k). Then |H| ≤ k−1
6k3

n3− k−1
2k2

εn3+9ε3/2k3n3.

Proof. Let V = V (H) and V = V1 ∪ · · · ∪ Vk be a partition such that H equals the blowup

S[V1, . . . , Vk] of S. Without loss of generality we may assume that |V1| ≥ · · · ≥ |Vk|. Let

δ = |Vk|/n− 1/k ≥ 0 and notice from Claim 3.7.17 that δ < 2ε1/2. For every i ∈ [k] fix a subset

V ′i ⊂ Vi of size exactly (1/k− δ)n (note that V ′k = Vk). Let V ′ = V ′1 ∪ · · · ∪ V ′k and R = V \ V ′.
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Notice that |V ′| = k(1/k − δ)n = n− kδn and |R| = kδn. Since the induced subgraph H[V ′] is

a balanced blowup of S, we have

|H[V ′]| = 1

3

(
k

2

)(
1

k
− δ
)3

n3.

Since the induced subgraph of ∂H on V ′ has size
(
k
2

)
(1/k − δ)2 n2 and every vertex in R has

exactly (k−1) (1/k − δ)n neighbors in V ′, the size of the induced subgraph of ∂H on R satisfies

|(∂H)[R]| = |∂H| − k − 1

2k

(
1

k
− δ
)2

n2 − kδn · (k − 1)

(
1

k
− δ
)
n =

(
k

2

)
δ2n2 − k − 1

2k
εn2.

For i ∈ {1, 2} let Ei denote the set of edges in H that have exactly i vertices in V ′. Notice that

for every vertex v ∈ R the induced subgraph of LH(v) on V ′ consists of (k − 1)/2 balanced

complete bipartite graphs and each of them has 2(1/k − δ)n vertices. Therefore,

|E1| = |R| ·
k − 1

2

(
1

k
− δ
)2

n2 =

(
k

2

)(
1

k
− δ
)2

δn3.

On the other hand, since every pair uv ∈ (∂H)[R] satisfies |NH(uv) ∩ V ′| = |V ′i | = (1/k − δ)n

for some unique i ∈ [k], we obtain

|E2| = |(∂H)[R]| ·
(

1

k
− δ
)
n =

((
k

2

)
δ2 − k − 1

2k
ε

)(
1

k
− δ
)
n3.
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Therefore,

|H| = |H[V ′]|+ |E1|+ |E2|+ |H[R]|

=
1

3

(
k

2

)(
1

k
− δ
)3

n3 +

(
k

2

)(
1

k
− δ
)2

δn3 +

((
k

2

)
δ2 − k − 1

2k
ε

)(
1

k
− δ
)
n3 + (δkn)3

=
k − 1

6k3
n3 − k

6
δ3n3 − k − 1

2k2
εn3 +

k − 1

2k
εδn3 + δ3k3n3.

Since δ < 2ε1/2, we obtain |H| ≤ k−1
6k3

n3 − k−1
2k2

εn3 + 9ε3/2k3n3.

The next lemma extends Lemma 3.7.25 from blowups of S to S-colorable 3-graphs.

Lemma 3.7.26. Let k ∈ 6N + {1, 3} and k ≥ 3. Let ε > 0 be a sufficiently small constant and

n be a sufficiently large constant. Suppose that (G,H) is a cancellative pair on a set V of size

n, V = V1 ∪ · · · ∪ Vk is a partition such that G is a k-partite graph with parts V1, . . . , Vk, and

H is a subgraph of the blowup S[V1, . . . , Vk] of some S ∈ STS(k). If |G| = (1 − ε)k−1
2k n

2, then

|H| ≤ k−1
6k2

n3 − k−1
4k2

εn3 + 2ε3/2n3.

Proof. Let Ŝ = S[V1, . . . , Vk]. Since |G| = (1 − ε)k−1
2k n

2, it follows from Claim 3.7.17 that

|Vi| ≥ n/k − 2ε1/2n for every i ∈ [k]. So NŜ(uv) ≥ n/k − 2ε1/2n for every uv ∈ ∂Ŝ. Let δ ≥ 0

be the real number that satisfies

|∂Ŝ| = (1− δ)k − 1

2k
n2.
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Note that δ ≤ ε and |∂Ŝ \G| = (ε− δ)k−1
2k n

2. Define

E =
{
E ∈ Ŝ : ∃{u, v} ∈ ∂Ŝ \G such that {u, v} ⊂ E

}
.

Let us partition E into three subsets E1, E2, and E3, where every edge E ∈ Ei satisfies that

|
(
E
2

)
\G| = i for i ∈ [3]. Since every pair uv ∈ ∂Ŝ satisfies NŜ(uv) ≥ n/k − 2ε1/2n, we have

|E1|+ 2|E2|+ 3|E3| =
∑

uv∈∂Ŝ\G

dŜ(uv) ≥ |∂Ŝ \G|
(n
k
− 2ε1/2n

)

= (ε− δ)k − 1

2k

(
1

k
− 2ε1/2

)
n3.

On the other hand, notice that

|E| = |E1|+ |E2|+ |E3| ≥
1

2
(|E1|+ 2|E2|+ 3|E3|)− E3,

and by Theorem 3.1.16, we have |E3| ≤
(
∂Ŝ \G

)3/2
≤ ε3/2n3. Therefore,

|E| ≥ 1

2
(ε− δ)k − 1

2k

(
1

k
− 2ε1/2

)
n3 − ε3/2n3 ≥ (ε− δ)k − 1

4k2
n3 − 2ε3/2n3.
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We may view H as a 3-graph obtained from Ŝ by removing some edges. In particular, since

E ⊂ Ŝ \H, we have |H| ≤ |Ŝ| − |E|. It follows from Lemma 3.7.25 that |Ŝ| ≤ k−1
6k2

n3− k−1
2k2

δn3 +

9δ3/2k3n3. Therefore,

|H| ≤ |Ŝ| − |E| ≤ k − 1

6k2
n3 − k − 1

2k2
δn3 + 9δ3/2k3n3 −

(
(ε− δ)k − 1

4k2
n3 − 2ε3/2n3

)
=
k − 1

6k2
n3 − k − 1

4k2
εn3 + 2ε3/2n3 −

(
k − 1

4k2
δn3 − 9δ3/2k3n3

)
≤ k − 1

6k2
n3 − k − 1

4k2
εn3 + 2ε3/2n3.

The next lemma is the key in the proof of Theorem 3.7.24.

Lemma 3.7.27. Let k ∈ 6N + {1, 3} and k ≥ 3. Let ε > 0 be a sufficiently small constant and

n be a sufficiently large constant. Suppose that (G,H) be a cancellative pair on n vertices, G is

a k-partite graph, and |G| = (1− ε)k−1
2k n

2. Then |H| ≤ k−1
6k2

n3 − k−1
4k2

εn3 + 109ε3/2k9n3.

Proof. Let V = V (G) = V (H). Let V = V1 ∪ · · · ∪ Vk be a partition such that G is a

subgraph of the complete k-partite graph Ĝ with parts V1, . . . , Vk. Suppose to the contrary

that |H| ≥ k−1
6k2

n3− k−1
4k2

εn3 + 109ε3/2k9n3 > (1− 2ε)k−1
6k2

n3. Then by Lemma 3.7.11, H contains

a subgraph H′ of size at least |H|−δn3, where δ = 600(2ε)1/2k3n3, such that H′ is a subgraph of

the blowup Ŝ = S[V1, . . . , Vk] of some S ∈ STS(k). We may assume that H′ = H∩Ŝ (otherwise
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we can replace H′ by H ∩ Ŝ). Let MG = Ĝ \ G and call members in MG missing edges of G.

Note that

|MG| = |Ĝ| − |G| ≤
k − 1

2k
n2 − (1− ε)k − 1

2k
n2 <

ε

2
n2.

Define

G′` =
{
uv ∈ ∂H′ : dH′(uv) ≥ n

100k

}
, and H′′ =

{
E ∈ H′ :

(
E

2

)
⊂ G′`

}
.

Let ε′1 ≥ 0 be the real number such that |G′`| = (1− ε′1)k−1
2k n

2. Note that G′` ⊂ G ⊂ Ĝ and

ε′1 ≥ ε.

Claim 3.7.28. We have |G′`| ≥
k−1
2k n

2 − 8δkn2. In other words, ε′1 ≤ 16 k2

k−1δ.

Proof. Suppose to the contrary that |G′`| <
k−1
2k n

2 − 8δkn2. Then

3|H′| =
∑

uv∈∂H′
NH′(uv) ≤ |G′`|

(n
k

+ 3ε1/2n
)

+ |∂H′ \G′`|
n

100k

≤
(
k − 1

2k
n2 − 8δkn2

)(n
k

+ 3ε1/2n
)

+ 8δkn2 · n

100k

≤ k − 1

2k2
n3 + 3ε1/2n3 − 8δkn2

(n
k
− n

100k

)
≤ k − 1

2k2
n3 − 5δn3 + 3ε1/2n3 <

k − 1

2k2
n3 − 4δn3,

which contradicts |H′| ≥ |H| − δn3 and |H| ≥ k−1
6k2

n3 − k−1
4k2

εn3 + 109ε3/2k9n3.

We will consider two cases depending on the value of ε′1.

Case 1: ε′1 > 400k3ε.
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Define

B1 =

{
E ∈ H \ H′ :

(
E

2

)
∩G′` 6= ∅

}
and B2 =

{
E ∈ H \ H′ :

(
E

3

)
⊂ G \G′`

}
.

Claim 3.7.29. We have |B1| ≤ 50εkn3.

Proof. For every uv ∈ G′` let ϕ(uv) ∈ [k] denote the index such that NH′(uv) ⊂ Vϕ(uv). Suppose

that E = {u, v, w} is contained in B1 and uv ∈ G′`. Then w 6∈ Vϕ(uv), since otherwise E would

be contained in H′. Notice that every vertex w ∈ NH(uv)\Vϕ(uv) cannot be adjacent to vertices

in Vϕ(uv) (in G), since by Observation 3.7.5 the set NH(uv) is independent in G. Therefore,

dMG
(w) ≥ Vϕ(uv) ≥ n/(100k) for every vertex w ∈ NH(uv) \ Vϕ(uv). Let

BV =
⋃

uv∈G′
(NH(uv) \ Vϕ(uv)).

Since |MG| ≤ k−1
2k εn

2, it follows from 2|MG| ≥
∑

w∈BV dMG
(w) and dMG

(w) ≥ n/(100k) for

every w ∈ BV that |BV | n
100k ≤ 2× k−1

2k εn
2 < εn2. Therefore, |BV | ≤ 100εkn.

Since every edge in B1 contains at least one vertex in BV , it follows that |B1| ≤ |BV |
(
n
2

)
≤

50εkn3.
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Since ∂B2 ⊂ G \ G′`, we have |∂B2| ≤ k−1
2k (ε′1 − ε)n2 < ε′1n

2. So, by inequality (??),

|B2| ≤ (∂B2)3/2 < (ε′1)3/2n3. Therefore, Lemma 3.7.26 applied to (G′`,H′′) yields

|H| = |H′′|+ |H′ \ H′′|+ |B1|+ |B2|

≤ k − 1

6k2
n3 − k − 1

4k2
ε′1n

3 + 2(ε′1)3/2n3 +
k − 1

2k
ε′1n

2 · n

100k
+ 50εkn3 + (ε′1)3/2n3

≤ k − 1

6k2
n3 −

(
k − 1

4k2
ε′1n

3 − k − 1

200k2
ε′1n

3 − (ε′1)3/2n3 + 50εkn3

)
≤ k − 1

6k2
n3 − k − 1

4k2
εn3.

where the last inequality follows from ε′1 > 400k3ε and ε′1 ≤ 16 k2

k−1δ � 1.

Case 2: ε′1 ≤ 400k3ε.

Define

G` =
{
uv ∈ ∂H : dH(uv) ≥ n

50k

}
, and H` =

{
E ∈ H :

(
E

2

)
⊂ G`

}
.

Let ε1 ≥ 0 be the real numbers such that |G`| = (1 − ε1)k−1
2k n

2. Note that G` ⊂ G ⊂ Ĝ and

ε1 ≥ ε.

We claim that it suffices to show that

|H`| ≤
k − 1

6k2
n3 − k − 1

4k2
ε1n

3 + 108ε
3/2
1 k9n3. (3.42)
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Indeed, suppose that Equation 3.42 holds. Then

|H| ≤ |H`|+ |G \G`| ·
n

50k

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 + 108ε
3/2
1 k9n3 + (ε1 − ε)

k − 1

2k
n2 · n

50k

≤ k − 1

6k2
n3 − k − 1

4k2
εn3 −

(
(ε1 − ε)

k − 1

5k2
− 108ε

3/2
1 k9

)
n3.

If ε1 ≥ 2ε, then (ε1 − ε)k−1
5k2
− 108ε

3/2
1 k9 > 0. If ε1 ≤ 2ε, then 108ε

3/2
1 k9n3 ≤ 109ε3/2k9n3. In

either case we are done.

Let H′` = H` ∩H′ and H′′` = H` ∩H′′. Define

B′1(a) =

{
E ∈ H` \ H′` :

∣∣∣∣(E2
)
∩G′`

∣∣∣∣ ≥ 2

}
,

B′1(b) =

{
E ∈ H′` \ H′′` :

∣∣∣∣(E2
)
∩G′`

∣∣∣∣ = 2

}
,

and B′2 =

{
E ∈ H` \ H′′` :

∣∣∣∣(E2
)
\G′`

∣∣∣∣ ≥ 2

}
.

A crucial observation is that if an edge E ∈ H` \ H′′` = H` \ H′′ satisfies
∣∣∣(E2) ∩G′`∣∣∣ = 3,

then E ∈ H` \ H′` = H` \ H′. Indeed, if E ∈ H′` ⊂ H′ and
(
E
3

)
⊂ G′`, then by the definition of

H′′, we would have E ∈ H′′, which implies that E ∈ H` ∩H′′ = H′′` .

Therefore, B′1(a) ∪ B′1(b) ∪ B′2 is a partition of H` \ H′′` .

Claim 3.7.30. We have |B′1(a)| ≤ 104ε2k2n2.
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Proof. Similar to the proof of Claim 3.7.29, for every uv ∈ G′` let ϕ(uv) ∈ [k] denote the index

such that NH′(uv) ⊂ Vϕ(uv). Let

BV =
⋃

uv∈G′
(NH(uv) \ Vϕ(uv)),

and recall from the proof of Claim 3.7.29 that |BV | ≤ 100εkn.

Suppose that E = {u, v, w} is contained in B′1(a) and assume that uv, uw ∈ G′`. Then by

the definition of BV , we have w ∈ BV (because uv ∈ G′`) and v ∈ BV (because uw ∈ G′`).

Therefore, E has at least two vertices in BV . It follows that |B′1(a)| ≤
(|BV |

2

)
· n < 104ε2k2n2.

Let ε2 ≥ 0 be the real number such that |G` ∩G′`| = (1− ε2)k−1
2k n

2. Notice that |G` ∩G′`| ≥

|G`| − |G \G′`| ≥ |G`| − ε′1
k−1
2k n

2, thus ε2 ≤ ε1 + ε′1 < ε1 + 400k3ε < 401k3ε1.

Now suppose that E = {u, v, w} is contained in B′1(b). By definition, E ∩ (G` \G′`) 6= ∅, and

without loss of generality we may assume that uv ∈ G` \ G′`. Since uv ∈ G` ⊂ G′`, it follows

from definitions of G` and G′` that |NH(uv)| ≥ n
50k and |NH′(uv)| < n

100k . This implies that

there exists i ∈ [k] \ {ϕ(uv)} such that |NH(uv)∩ Vi| ≥ n
50k −

n
100k = n

100k . By Claim 3.7.20, we

actually have |NH(uv)∩Vi| ≥ |NH(uv)| − εn2

|NH(uv)| ≥ |NH(uv)| − 100εkn2, which in turn implies

that |NH′(uv)| ≤ |NH(uv) \ Vi| ≤ 100εkn2. Therefore,

|B′1(b)| ≤
∑

uv∈G`\G′`

|NH′(uv)| ≤ 100εkn2 · |G \G′`| ≤ 100εε′1kn
3.
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Now suppose that E is an edge in B′2. By definition
∣∣∣(E2) ∩ (G` \G′`)

∣∣∣ ≥ 2. So

|B′2| ≤
1

2

∑
uv∈G`\G′`

NH`(uv) ≤ 1

2
|G` \G′`|

(n
k

+ 3ε1/2n
)

=
1

2
|G` \ (G` ∩G′`)|

(n
k

+ 3ε1/2n
)

=
1

2
(ε2 − ε1)

k − 1

2k
n2
(n
k

+ 3ε1/2n
)

≤ k − 1

4k2
(ε2 − ε1)n3 + ε1/2ε2n

3

(the factor 1/2 is due to the fact that every edge in B′2 is counted at least twice in the summation∑
uv∈G`\G′`

NH`(uv)).

Now Lemma 3.7.26 applied to (G` ∩G′`,H′′` ) yields

|H`| = |H′′` |+ |B′1(a)|+ |B′2(b)|+ |B′2|

≤ k − 1

6k2
n3 − k − 1

4k2
ε2n

3 + 2ε
3/2
2 n3 + 104ε2k2n3 +

k − 1

4k2
(ε2 − ε1)n3 + ε1/2ε2n

3

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 +
(

2ε
3/2
2 n3 + 104ε2k2n3 + ε1/2ε2n

3
)

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 +
(

2(401k3ε1)3/2 + 104(401k3ε1)2k2 + ε
1/2
1 (401k3ε1)

)
n3

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 + 108ε
3/2
1 k9n3,

this proves Equation 3.42.

Now we are ready to prove Theorem 3.7.24.
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Proof of Theorem 3.7.24. Fix C be a sufficiently large constant (the exact value of C can be

obtained from the last inequality of the proof). Let ε > 0 be a sufficiently small constant

and let n be a sufficiently large integer. Let H be a cancellative 3-graph on n vertices with

|∂H| = (1− ε)k−1
2k n

2. Suppose to the contrary that

|H| ≥ k − 1

6k2
n3 − k − 1

4k2
εn3 + Cε3/2n3 ≥ (1− 2ε)

k − 1

6k2
n3.

Let V = V (H). By Lemma 3.7.10, there exists a set U \V of size at most 130(2ε)k4n such that

the induced subgraph of ∂H on V \U is k-partite. Viewing H[V \U ] as a subgraph on V (so U

is a set of isolate vertices in H[V \U ]). Let ε1 ≥ 0 be the real number such that |(∂H)[V \U ]| =

(1− ε1)k−1
2k n

2. Notice that |(∂H)[V \U ]| ≥ |∂H|− |U |n, so ε1 ≤ 4×130(2ε)k4 ≤ 1100k4ε. Since

the pair ((∂H)[V \ U ],H[V \ U ]) is cancellative, it follows from Lemma 3.7.27 that

|H[V \ U ]| ≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 + 109ε
3/2
1 k9n3.

For i ∈ [3] let Ei denote the set of edges inH that have exactly i vertices in U . For every u ∈ U let

dV \U (u) = |NH(u)\U |. Similar to Claim 3.7.18, we have |NH(uv)\U | ≤
(

1/k + 3ε
1/2
1

)
n for ev-
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ery v ∈ NH(u). In other words, every vertex in LH(v)[V \U ] has degree at most
(

1/k + 3ε
1/2
1

)
n.

Therefore,

|E1| ≤
∑
u∈U
|LH(v)[V \ U ]| ≤ 1

2

∑
u∈U

dV \U (u)×
(

1

k
+ 3ε

1/2
1

)
n

=
1

2
|(∂H)[V,U ]|

(
1

k
+ 3ε

1/2
1

)
n.

Therefore,

|H| ≤ |H[V \ U ]|+ |E1|+ |E2|+ |E3|

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 + 109ε
3/2
1 k9n3 +

1

2
|(∂H)[V,U ]|

(
1

k
+ 3ε

1/2
1

)
n+

(
|U |
2

)
n

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 +
1

2

k − 1

2k
(ε1 − ε)n2

(
1

k
+ 3ε

1/2
1

)
n+

(
109ε

3/2
1 k9 + (260)2ε2k8

)
n3

≤ k − 1

6k2
n3 − k − 1

4k2
ε1n

3 +
k − 1

4k2
(ε1 − ε)n3 +

(
ε
3/2
1 + 109ε

3/2
1 k9 + (260)2ε2k8

)
n3

<
k − 1

6k2
n3 − k − 1

4k2
εn3 + Cε3/2n3

contradicting our assumption (the last inequality used ε1 ≤ 1100k4ε). This completes the proof

of Theorem 3.7.24.

3.8 Concluding remarks

In this chapter we proved that for any r ≥ 3 and any family F of r-graphs the function

g(F) has at most countably many discontinuities. We also constructed a family D of 3-graphs

such that g(D) is discontinuous at x = 2/3. It seems natural to ask the following question.
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Problem 3.8.1. Can g(F) have infinitely many discontinuities?

In Section 3.5 we proved several results about g(Tr) for r ≥ 3. Even for r = 3 the function

g(T3) is already shown to have many intersecting properties, and is closely related to Steiner

triple systems. The following question seems difficult for x not of the form (k−1)/k with k ≡ 1

or 3 (mod 6).

Problem 3.8.2. Determine g(T3, x) for all x ∈ (2/3, 1].

Reiher observed that the function x(1−x) in Theorem 3.5.7 can be replaced by the piecewise

linear function p(x) = k−1
k+1 −

k2−k−1
k(k+1) x for all k ∈ N+ and k−1

k ≤ x ≤ k
k+1 , which implies that

g(T3, x) ≤ p(x) for all 2
3 ≤ x ≤ 1. This can be shown by redoing the proof of Theorem 3.5.7 and

taking into account that instead of ω ≥ 1
1−x one can directly use ω ≥ k + 1, unless x = k−1

k ,

but this case is already understood.

Now let us show a lower bound for g(T3, x) for x ∈ (2/3, 6/7]. Let F denote the Fano Plane,

i.e., F is a 3-graph on 7 vertices with edge set

{123, 345, 561, 174, 275, 376, 246}.

Let α ∈ [1/7, 1/3] and β = (1 − 3α)/4. Let Hn(α) be obtained from F by blowing up each

vertex in {1, 2, 3} into a set of size of αn and blowing up each vertex in {4, 5, 6, 7} into a set of

size of βn (note that these weights for blowing up the Fano plane are optimal). Let

x = lim
n→∞

|∂Hn(α)|(
n
2

) = 6α2 + 12β2 + 24αβ =
3

4
(1 + 2α− 7α2), (3.43)
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and

y = lim
n→∞

|Hn(α)|(
n
3

) = 6α3 + 36αβ2 =
3

4
α(3− 18α+ 35α2). (3.44)

Then, Equation 3.43 and Equation 3.44 give

y =
1

147

(
−70

√
18x2 − 21x3 + 63x+ 60

√
18− 21x− 36

)
, (3.45)

which implies

g(T3, x) ≥ 1

147

(
−70

√
18x2 − 21x3 + 63x+ 60

√
18− 21x− 36

)

for all x ∈ [2/3, 6/7] (see Figure 13).

6/49

2/9

6
7
6
7

573
700

x

y

Figure 13. The lower bound for g(T3, x) given by Equation 3.45.
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The construction above gives an algebraic curve connecting (2/3, 2/9) and (6/7, 6/49). Using

a similar method, one can construct an algebraic curve defined by

y =
2
√

3(k + 3)(k − 1− kx)
3
2

3k2
√
k − 3

+
3kx− 2k + 2

k2
(3.46)

to connect (2/3, 2/9) and ((k−1)/k, (k−1)/k2) for all k ≡ 1 or 3 (mod 6). However, we do not

know how to construct curves to connect ((k − 1)/k, (k − 1)/k2) and ((k′ − 1)/k′, (k′ − 1)/k′2)

for consecutive k, k′ ≥ 7 and k, k′ ≡ 1 or 3 (mod 6).

For r ≥ 4 there is very little known about upper and lower bounds for g(Tr, x) for x >

(r − 1)!/rr−2. We pose the following question.

Problem 3.8.3. Let r ≥ 4 and x > (r − 1)!/rr−2. Improve the upper bound for g(Tr, x), and

construct cancellative r-graphs to give good lower bounds for g(Tr, x).

Given our poor understanding of hypergraph Turán problems, determining the feasible

region of other families of hypergraphs would also be of interest. In particular, we pose the

following two questions.

Problem 3.8.4. Determine the feasible region of Hr
`+1 for r ≥ 3 and ` ≥ r.

Problem 3.8.5. Determine the feasible region of the Fano Plane.

In Section 3.7, we showed that the cancellative triple systems and the Steiner triple systems

are closely related to each other by proving that every cancellative triple system whose shadow

density is close to (k − 1)/k and edge density is close to (k − 1)/k2 is structurally close to a
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balanced blowup of some Steiner triple system on k vertices for every k ∈ 6N+{1, 3} and k ≥ 3.

Moreover, using this stability result we proved that the feasible region function g(T3) of T3 has

infinitely many local maxima.

• It would be interesting to explore whether there are similar relations between cancellative

r-graphs and r-uniforms designs for r ≥ 4. The case r = 4 is of particular interest since the

stability property and the maximum size of an n-vertex cancellative 4-graph are already well

studied [?; 208; 171].

• Theorem 3.1.28 shows that the point
(
k−1
k , k−1

k2

)
is a local maximum of g(T3) for every

k ∈ 6N + {1, 3} and k ≥ 3. In particular, g(T3) of T3 has infinitely many local maxima. This

indicates that the shape of the feasible region Ω(F) might be quite wild for general families F .

On the other hand, a complete determination of g(T3) seems hard and it would be interesting

to see whether methods that are used to solve the clique density problem [216; 201; 217] can

be applied here.

• A nontrivial (i.e. the first coordinate is not on the boundary of the interval projΩ(F))

local minimum (if it exists) of a feasible region function seems more mysterious. It would be

interesting to find an explicit nontrivial local minimum of g(F) for some family F .
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4.1 Introduction

We study the stability property of hypergraph Turán problems in this chapter. All families

F of forbidden hypergraphs considered in this chapter will satisfy that π(F) > 0, and such

families are called nondegenerate.

Many families F have the property that there is a unique F-free hypergraph G on n vertices

achieving ex(n,F), and moreover, every F-free hypergraph H of size close to ex(n,F) can be

transformed to G by deleting and adding very few edges. Such a property is called stability of

F . The first stability theorem was proved independently by Erdős and Simonovits [233].

Theorem 4.1.1 (Erdős–Simonovits [233]). Let ` ≥ 2 and let F be a family of graphs with

χ(F) = `+ 1. Then for every δ > 0 there exist ε > 0 and N0 ∈ N such that every F-free graph

on n ≥ N0 vertices with at least (1 − ε)ex(n,F) edges can be transformed to the Turán graph

T (n, `) by deleting and adding at most δn2 edges.

The stability phenomenon has been used to determine ex(n,F) exactly in many cases. It

was first used by Simonovits in [233] to determine ex(n, F ) exactly for all edge-critical graphs

F and large n, and then by several authors (e.g. see [113; 141; 142; 195; 209; 30; 205]) to prove

exact results for hypergraphs. In this chapter, stability will always mean stability relative to

some intended class H of ’almost extremal’ F-free graphs and we distinguish the following types

of stability that have been studied in the literature.

Definition 4.1.2. Let F be a nondegenerate family of r-graphs, where r ≥ 2, and let H be a

class of F-free r-graphs.
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(a) If for every δ > 0 there exist ε > 0 and N0 ∈ N such that every F-free r-graph H on

n ≥ N0 vertices with |H| ≥ (π(F)/r! − ε)nr becomes a subgraph of some member of H

after removing at most δ|H| edges, then F is said to be edge-stable with respect to H.

(b) If for every δ > 0 there exist ε > 0 and N0 ∈ N such that every F-free r-graph H on

n ≥ N0 vertices with |H| ≥ (π(F)/r! − ε)nr becomes a subgraph of some member of H

after removing at most δ|V (H)| vertices, then F is said to be vertex-stable with respect to

H.

(c) If there exist ε > 0 and N0 such that every F-free r-graph H on n ≥ N0 vertices with

δ(H) ≥
(
π(F)/(r − 1)! − ε

)
nr−1 is a subgraph of some member of H we say that F is

degree-stable with respect to H.

As a trivial example, every nondegenerate family F is stable in all three senses with respect

to the class Forb(F) of all F-free r-graphs. More interestingly, Theorem 4.1.1 tells us that

every family F of graphs with χ(F ) = ` + 1 ≥ 3 is edge-stable with respect to the class

T` = {T (n, `) : n ∈ N} of `-partite Turán graphs.

In general, if a family F of r-graphs is degree-stable with respect to some class H, then a

standard vertex deletion argument (see e.g. Fact 4.2.1 (a)) shows that F is vertex-stable with

respect to H as well. Moreover, since any δv(H) vertices of an r-graph H cover at most δv(H)r

edges of H, it is in all interesting examples the case that if F is vertex-stable with respect to

H, then it is edge-stable with respect to H as well.

The goal of this chpater is to provide a unified framework for the stability of certain classes

of graph and hypergraph families. Our main result (Theorem 4.1.7) reduces the stability of
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many problems to the much simpler task of checking that F-free graphs or hypergraphs with

large minimum degree have a property we call vertex-extendability (see Definition 4.1.6). The

approach is designed for degree-stability and thus it not only simplifies the proofs of many

known stability theorems but also gives stronger forms of these stability theorems.

4.1.1 Main result

Our results can be regarded as adding a new ingredient to Zykov’s symmetrization method [252]

and we commence by describing an ‘axiomatic’ framework for the determination of extremal

numbers by means of symmetrization.

Given two r-graphs F and H we say H is F -hom-free if there is no homomorphism from F

to H. For a family F of r-graphs, we say that H is F-hom-free if it is F -hom-free for every

F ∈ F . The forbidden families F studied in this article have the following property.

Definition 4.1.3 (Blowup-invariance). A family F of r-graphs is blowup-invariant if every

F-free r-graph is F-hom-free as well.

For instance, for every ` ≥ 2 the families of graphs {K`} and {C3, . . . , C2`−1} are blowup

invariant, whilst {C5} is not blowup-invariant. In the graph case one can easily check that a

one-element family {F} is blowup-invariant if and only if F is a clique, but for hypergraphs

blowup-invariant families consisting of a single hypergraph F are much more common. In

fact, if every pair of vertices of F is covered by an edge of F , then {F} is blowup-invariant.

One confirms easily that every family F closed under taking homomorphic images is blowup-

invariant.
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We say two vertices u, v ∈ V (H) are equivalent if LH(u) = LH(v). Evidently, equivalence

is an equivalence relation. We say that H is symmetrized if for any two non-equivalent vertices

u, v ∈ V (H) there is an edge E ∈ H containing both of them. For instance, a symmetrized

graph is the same as a complete multipartite graph. We shall prove the following result by

means of Zykov’s symmetrization method.

Theorem 4.1.4. Suppose that F is a blowup-invariant family of r-graphs. If H denotes the

class of all symmetrized F-free r-graphs, then ex(n,F) = h(n) holds for every n ∈ N, where

h(n) = max {|H| : H ∈ H and v(H) = n}.

Let us observe that this statement is very similar to the Lagrangian method developed

and utilised by Motzkin–Straus [189], Sidorenko [232], Frankl–Füredi [102], and many others.

Preparing the statement of our main result, we introduce some further notions. Recall that a

class H of r-graphs is called hereditary if it is closed under taking induced subgraphs.

Definition 4.1.5 (Symmetrized-stability). Let F be a family of r-graphs and let H be a class of

F-free r-graphs. We say that F is symmetrized-stable with respect to H if there exist ε > 0 and

N0 such that every symmetrized F-free r-graphs H on n ≥ N0 vertices with |H| ≥ (π(F)/r! −

ε)nr is a subgraph of a member of H.

The next definition might be the most important one in this article.

Definition 4.1.6 (Vertex-extendibility). Let F be a family of r-graphs and let H be a class

of F-free r-graphs. We say that F is vertex-extendable with respect to H if there exist ζ > 0

and N0 ∈ N such that for every F-free r-graph H on n ≥ N0 vertices satisfying δ(H) ≥
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(
π(F)/(r− 1)!− ζ

)
nr−1 the following holds: if H− v is a subgraph of a member of H for some

vertex v ∈ V (H), then H is a subgraph of a member of H as well.

We can now state our sufficient conditions for degree-stability.

Theorem 4.1.7 (Main result). Suppose that F is a blowup-invariant nondegenerate family of

r-graphs and that H is a hereditary class of F-free r-graphs. If F is symmetrized-stable and

vertex-extendable with respect to H, then F is degree-stable with respect to H as well.

In practice the assumptions on H are often easy to verify but it may happen that the family

F we want to study fails to be blowup-invariant. If in such a situation we know for any reason

that F is vertex-stable with respect to H, we can improve this information to degree-stability.

Theorem 4.1.8. Suppose that F is a nondegenerate family of r-graphs and that H is a heredi-

tary class of F-free r-graphs. If F is vertex-stable and vertex-extendable with respect to H, then

it is degree-stable with respect to H as well.

4.1.2 Further results and applications

For integers ` ≥ r ≥ 2 let Kr` be the class of all blowups of Kr
` . If r = 2 we omit the

superscript and just write K` for the class of complete `-partite graphs (whose vertex classes

are allowed to be empty). Most but not all stability results described below are with respect

to classes of the form Kr` .

4.1.2.1 Graphs

The classical stability theorem of Erdős and Simonovits (Theorem 4.1.1) informs us that ev-

ery family F of graphs with χ(F) = `+1 ≥ 3 is edge-stable with respect to K`. Complementing
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this result one can also characterise the families of graphs which are degree-stable and vertex-

stable with respect to K`. To this end we recall that a graph F is said to be edge-critical if it

has an edge e ∈ F such that χ(F − e) < χ(F ) and matching-critical if there exists a matching

M ⊆ F such that χ(F −M) < χ(F ). More generally, we call a family F of graphs edge-critical

or matching-critical if there exists a graph F ∈ F with χ(F ) = χ(F) that is edge-critical or

matching-critical. In the result that follows, part (b) is due to Erdős and Simonovits [72], while

part (a) might very well be new.

Theorem 4.1.9. A family F of graphs with χ(F) = `+ 1 ≥ 3 is

(a) vertex-stable with respect to K` if and only if it is matching-critical

(b) and degree-stable with respect to K` if and only if it is edge-critical.

4.1.2.2 Cancellative hypergraphs and generalized triangles

Recall that an r-graph H is cancellative if A ∪ B = A ∪ C implies that B = C for all

A,B,C ∈ H. Since A ∪ B = A ∪ C is equivalent to B4C ⊆ A, an r-graph H is cancellative if

and only if it is Tr-free, where Tr denotes the family consisting of all r-graphs with three edges

one of which contains the symmetric difference of the two other ones.

It was conjectured by Katona and proved by Bollobás [24] that the maximum number of

edges in an n-vertex T3-free 3-graph is uniquely achieved by the balanced complete 3-partite

3-graph. Keevash and the second author [139] proved that T3 is edge-stable with respect to

K3
3, and the first author [160] discovered another short proof of the edge-stability of T3 giving

a linear dependency between the error parameters. Sidorenko [232] proved that the maximum



140

number of edges in an n-vertex T4-free 4-graph is uniquely achieved by the balanced complete

4-partite 4-graph. Later, Pikhurko [208] proved that T4 is vertex-stable with respect to K4
4 using

a sophisticated variation of Zykov symmetrization. For r ≥ 5 the value of π(Tr) is unknown.

Cancellative hypergraphs are closely related to the Turán problem for generalized triangles.

For r ≥ 2 let Σr be the collection of all r-graphs with three edges A,B,C such that |B∩C| = r−1

and B4C ⊆ A. The unique r-graph Tr ∈ Σr with v(Tr) = 2r − 1 is called the generalized

triangle. It is easy to see that Σ2 = T2 = {K3}, Σ3 = T3, and Σr ⊂ Tr for r ≥ 4.

The results on T4 due to Sidorenko [232] and Pikhurko [208] quoted earlier hold for Σ4

instead of T4 as well. In particular, Σ4 is known to be vertex-stable with respect to K4
4. For

r = 5, 6 Frankl and Füredi [102] proved that the extremal numbers ex(n,Σr) are only realized

by balanced blowups of the famous Witt designs [248] with parameters (11, 5, 4) and (12, 6, 5),

respectively. Norin and Yepremyan [204] proved that Σ5 and Σ6 are edge-stable with respect

to blowups of these Witt-designs, but Pikhurko showed [208] that they fail to be vertex-stable.

For r ≥ 7 it is an open problem to determine π(Σr).

Theorem 4.1.10. For r ∈ {3, 4} the family Σr is degree-stable with respect to Krr.

4.1.2.3 Hypergraph expansions

A set X ⊂ V (F ) is called 2-covered in a hypergraph F if it induces a clique in ∂r−2F . If

V (F ) itself is 2-covered in F we simply say that F is 2-covered.

For an r-graph F with ` vertices we define KF` to be the set of all r-graphs of the form

F ∪
{
Suv : uv ∈

(
V (F )

2

)
\ ∂r−2F

}
, where for every pair of vertices uv ∈

(
V (F )

2

)
\ ∂r−2F not
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covered by an edge of F the edge Suv contains u and v. We write HF
` for the unique member

of KF` having the largest number of vertices, namely

v(HF
` ) = `+ (r − 2)

((
`

2

)
− |∂r−2F |

)
.

The r-graphs in KF` are called weak expansions of F while HF
` is called the expansion of F .

If F has no edges (and thus consists of ` isolated vertices) we write Kr` and Hr
` instead of KF`

and HF
` .

The notion of hypergraph expansions was first introduced by the second author in [191] to

extend Turán’s theorem to hypergraphs. In [191] it was proved that for every n ≥ ` ≥ r ≥ 2 the

maximum number of edges in an n-vertex Kr`+1-free r-graph is uniquely achieved by Tr(n, `), the

balanced complete `-partite r-graph on n vertices. In addition, [191] proved that Kr`+1 is edge-

stable with respect to Kr`+1. Later de Oliveira Contiero, Hoppen, Lefmann, and Odermann [51],

and independently, the first author [160] improved the edge-stability result by showing that

a linear dependence between δ and ε is sufficient. Pikhurko [209] refined [191] by showing

that Tr(n, `) is also the unique Hr
`+1-free r-graph on n vertices with the maximum number of

edges for sufficiently large n.

Keevash [135] observed a generalization of these results to expansions of a large class of

hypergraphs F . Let us write λ(G) for the Lagrangian of a hypergraph G and set πλ(F ) =

sup {λ(G) : G is F -free} for every r-graph F .
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Theorem 4.1.11 (Keevash). Let F be an r-graph with v(F ) = `+ 1. If πλ(F ) ≤
(
`
r

)
/`r, then

ex(n,KF`+1) ≤
(
`

r

)
nr/`r

holds for all positive integers n, and equality occurs whenever n is divisible by r. In particular,

π(HF
`+1) = π(KF`+1) = (`)r/`

r.

In the special case where F has an isolated vertex and πλ(F ) <
(
`
r

)
/`r Brandt, Irwin, and

Jiang [30], and independently, Norin and Yepremyan [205] proved a stability theorem for the

family KF`+1 and used it to determine ex(n,Hr
` ) exactly for all sufficiently large integers n. More

specifically, [30] shows that KF`+1 is vertex-stable, and [205] shows that KF`+1 is edge-stable. Our

result below shows the stronger fact that KF`+1 is degree-stable.

Moreover, we prove degree-stability in many cases where F has no isolated vertices but is

contained instead in the hypergraph B(r, `+ 1) with vertex set [`+ 1] and edge set

{[r]} ∪ {E ⊆ [2, `+ 1] : |E| = r and |[2, r] ∩ E| ≤ 1}.

Theorem 4.1.12. Let ` ≥ r ≥ 2 and suppose that F is an r-graph satisfying v(F ) = `+ 1 and

sup {λ(G) : G is F -free and not Kr
` -colorable} <

(
`

r

)
/`r. (4.1)
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If either F has an isolated vertex or F ⊆ B(r, `+ 1), then the family KF`+1 is degree-stable with

respect to Kr` .

There are several natural examples of hypergraphs F which have been proved to satisfy

condition in the theorem above in the literature but whose families of weak expansions KF`+1

were not known to be degree-stable before. For instance, Hefetz and Keevash [122] studied the

case that F = M3
2 is a 3-uniform matching with two edges and six vertices. More generally

Jiang, Peng, and Wu [130] proved the assumption if F = {M3
t , L

3
t , L

4
t } holds for some t ≥ 2;

here M3
t denotes the 3-uniform matching of size t and for r ≥ 2 the r-graph Lrt consists of t

edges having one vertex v in common such that E ∩E′ = {v} holds for all distinct E,E′ ∈ Lrt .

Brandt, Irwin, and Jiang [30] proved that in these cases the families KF are vertex-stable. By

combining the results in [130] on Lagrangians with Theorem 4.1.12 one immediately obtains

the following strengthening of this fact.

Corollary 4.1.13. For t ≥ 2 the families KM
3
t

3t , KL
3
t

2t+1, KL
4
t

3t+1 are degree-stable with respect to

K3
3t−1, K3

2t, K
4
3t, respectively.

4.1.2.4 Expansions of matchings of size 2

For r ≥ 3 let M r
2 be the r-graph on 2r vertices consisting of two disjoint edges. The trivial

observation that no r-graph in Kr2r−1 contains a weak expansion of M r
2 yields the lower bound

π(KM
r
2

2r ) ≥ (2r − 1)r/(2r − 1)r. In their work [122] establishing equality for r = 3 Hefetz and

Keevash also observed that for r ≥ 4 there is a denser construction of KM
r
2

2r -free r-graphs.
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Call an r-graphH semibipartite if there exists a partition V (H) = A∪B such that |A∩E| = 1

holds for every E ∈ H. If H contains all |A|
( |B|
r−1

)
such edges we say that H is a complete semibi-

partite r-graph. It is easy to see that semibipartite r-graphs cannot contain weak expansions

of M r
2 and that (1 − 1/r)r−1 is the supremum of the edge densities of semibipartite r-graphs.

A straightforward calculation shows that for r ≥ 4 this number is indeed larger than the lower

bound (2r − 1)r/(2r − 1)r mentioned before. In fact Hefetz and Keevash [122] conjectured

π(KM
r
2

2r ) = (1 − 1/r)r−1 for every r ≥ 4. This was proved by Bene Watts, Norin, and Yepre-

myan [17] who also showed that KM
r
2

2r is edge-stable with respect to the class Sr of all complete

semibipartite r-graphs. Combining a substantial result on Lagrangians from their work with

our Theorem 4.1.7 we strengthen this to degree-stability.

Theorem 4.1.14. For every r ≥ 4 the family of weak expansions of M r
2 is degree-stable with

respect to Sr.
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4.2 Proofs

4.2.1 Proof of the main result

Fact 4.2.1. Let F be a family of r-graphs and let H be an F-free r-graph on n vertices. If H

has at least (π(F)/r!− ε)nr edges, then

(a) the set Zε(H) =
{
u ∈ V (H) : dH(u) ≤

(
π(F)/(r − 1)!− 2ε1/2

)
nr−1

}
has size at most ε1/2n,

(b) and the r-graph H′ = H− Zε(H) satisfies δ(H′) >
(
π(F)/(r − 1)!− 3ε1/2

)
nr−1.

We prove Theorems 4.1.4, 4.1.7, and 4.1.8 in this section. To this end the following pieces of

notation will be convenient: If C denotes an equivalence class of some hypergraph H, we write

dH(C) for the common degree of the vertices in C and LH(C) for their common link. Given a

class of hypergraphs H we denote the class of spanning subgraphs of members of H by H+, i.e.

we set

H+ = {H : there is H′ ∈ H with V (H) = V (H′) and H ⊆ H′}.

If H is hereditary, this is the same as the class of (not necessarily spanning) subgraphs of

members of H.

Proof of Theorem 4.1.4. Fix n ∈ N. The lower bound ex(n,F) ≥ h(n) is an immediate conse-

quence of the fact that all members of H are F-free. So it remains to establish the upper bound

ex(n,F) ≤ h(n).

Suppose that it is not true and let H be an F-free r-graph on n vertices with more than h(n)

edges chosen in such a way that the number m of its equivalence classes is minimum. Let

C1, . . . , Cm denote the equivalence classes of H.
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Due to |H| > h(n) we know that H cannot be symmetrized. In other words, there exist

i, j ∈ [m] such that the graph ∂r−2H is not complete between Ci and Cj . Without loss of

generality we may assume that {i, j} = {1, 2} and dH(C1) ≤ dH(C2). In view of the definition

of equivalence there are actually no edges between C1 and C2 in ∂r−2H.

Now let H′ be the unique r-graph satisfying V (H′) = V (H), H′ − C1 = H − C1, and

LH′(v) = LH(w) for all v ∈ C1 and w ∈ C2. Observe that {C1∪C2, C3, . . . , Cm} is a refinement

of the partition of V (H′) into equivalence classes of H′, for which reason H′ has fewer than m

equivalence classes. Together with

|H′| = |H|+ |C1| (dH(C2)− dH(C1)) ≥ |H| > h(n)

and our minimal choice of m this implies that H′ cannot be F-free. As there exists a homomor-

phism from H′ to H, it follows that H fails to be F-hom-free. But, as F is blowup-invariant,

this contradicts the assumption that H be F-free.

For the proof of Theorem 4.1.7 it will be convenient to say for ζ > 0 and N0 ∈ N that a

family F of r-graphs is (ζ,N0)-vertex-extendable with respect to a class of r-graphs H if using

the notation of Definiton 4.1.6 ζ and N0 exemplify the vertex-extendibility of F with respect

to H. The next lemma shows that vertex-extendibility can be used iteratively.

Lemma 4.2.2. Suppose that the nondegenerate family F of r-graphs is (2ε,N0)-vertex-extendable

with respect to a class H of F-free r-graphs, where ε ∈ (0, 1/2) and N0 ∈ N. Let H be an F-free



147

r-graph on n ≥ 2N0 vertices satisfying δ(H) ≥
(
π(F)/(r − 1)! − ε

)
nr−1. If there exists a set

S ⊆ V (H) with |S| ≤ εn and (H− S) ∈ H+, then H ∈ H+.

Proof. Choose a minimal set S′ ⊆ S with (H − S′) ∈ H+. If S′ = ∅ we are done, so suppose

for the sake of contradiction that there exists a vertex v ∈ S′. Setting S′′ = S′ \ {v} and

H′′ = H− S′′ we have v(H′′) ≥ n− |S| ≥ (1− ε)n ≥ n/2 ≥ N0 and

δ(H′′) ≥ δ(H)− |S′′|nr−2 >
(
π(F)/(r − 1)!− ε

)
nr−1 − εnr−1

≥
(
π(F)/(r − 1)!− 2ε

)
v(H′′)r−1.

Moreover, we are assuming that H′′ − v = H − S′ is in H+. So by vertex-extendibility H′′

belongs to H+ as well and S′′ contradicts the minimality of S′.

Next we shall show the following strengthening of Theorem 4.1.7 which also allows vertices

of low degree in the almost extremal F-free graphs. Recall that the sets Zε(H) appearing below

were defined in Fact 4.2.1 (a).

Theorem 4.2.3. Let F be a blowup-invariant nondegenerate family of r-graphs and let H be

a hereditary class of F-free r-graphs. If F is symmetrized-stable and vertex-extendable with

respect to H, then there are ε > 0 and N0 ∈ N such that every F-free r-graph H on n ≥ N0

vertices with |H| > (π(F)/r!− ε)nr satisfies H− Zε(H) ∈ H+.

The proof involves the following invariant of hypergraphs: If C1, . . . , Cm are the equivalence

classes of an r-graph H, we set Ψ(H) =
∑

i |Ci|2.



148

Proof of Theorem 4.2.3. Choose ε ∈ (0, 1/36) so small and N0 ∈ N so large that

(1) the symmetrized stability of F with respect to H is exemplified by ε and N0

(2) and F is (6ε1/2, N0/3)-vertex-extendable with respect to H.

Now we fix n ≥ N0 and, assuming that the conclusion fails for n-vertex hypergraphs H,

we pick a counterexample H with v(H) = n such that the pair (|H|,Ψ(H)) is lexicographically

maximal (which makes sense, as n is fixed). Let C1, . . . , Cm be the equivalence classes of H.

Setting Z = Zε(H) we have (H−Z) 6∈ H+ and, as H is hereditary, H 6∈ H+ follows. Now (1)

informs us that H is not symmetrized. So without loss of generality we may suppose that ∂r−2H

has no edges between C1 and C2 and that (dH(C1), |C1|) ≤lex (dH(C2), |C2|), where ≤lex means

lexicographic ordering.

Now we pick two arbitrary vertices v1 ∈ C1 and v2 ∈ C2 and symmetrize only them, i.e., we

let H′ be the r-graph with V (H′) = V (H), H′ − v1 = H− v1 and LH′(v1) = LH(v2). Clearly, if

dH(v1) < dH(v2), then |H′| > |H|. Moreover, if dH(v1) = dH(v2), then |H′| = |H|, |C1| ≤ |C2|,

and

Ψ(H′)−Ψ(H) ≥ (|C1| − 1)2 + (|C2|+ 1)2 − |C1|2 − |C2|2 = 2(|C2| − |C1|+ 1) ≥ 2.

In both cases (|H′|,Ψ(H′)) is lexicographically larger than (|H|,Ψ(H)) and our choice of H

implies H′ − Zε(H′) ∈ H+. By Fact 4.2.1 (a) the set Q = Zε(H′) ∪ {v1} satisfies |Q| ≤

ε1/2n + 1 < 2ε1/2n. Since H is hereditary, the r-graph H − Q = H′ − Q belongs to H+. Now

Fact 4.2.1 (b) and (2) show that Lemma 4.2.2 applies to 3ε1/2, 2N0/3, H− (Q∩Z), and Q \Z
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here in place of ε, N0, H, and S there. Thus H − (Q ∩ Z) belongs to H+ and, since H is

hereditary, this yields the contradiction (H− Z) ∈ H+.

4.2.2 Proof for graphs

In this subsection we prove Theorem 4.1.9. As we have already mentioned, its part (b)

is due to Erdős and Simonovits [72], who proved that for every edge-critical graph F with

χ(F ) = `+ 1 ≥ 3 there exists some N0 ∈ N such that every graph G on n ≥ N0 vertices whose

minimum degree is larger than 3`−4
3`−1n+O(1) either contains F or is `-colorable. Consequently,

all edge-critical families of graphs are degree-stable with respect to K`.

Now suppose, conversely, that some graph family F is degree-stable with respect to the

class K`, where ` ≥ 2. This means, in particular, that for every n ≥ ` + 1 the graph T+(n, `)

obtained from the n-vertex `-partite Turán graph by inserting an additional edge into one of its

vertex classes cannot be F-free. Moreover, there cannot exist a graph F ′ ∈ F with χ(F ′) ≤ `,

for then some member of K` would fail to be F-free (as demanded by Definition 4.1.2). So

altogether, F needs to contain an edge-critical graph F with χ(F ) = χ(F) = ` + 1. In other

words, F is indeed edge-critical.

We are left with proving part (a) of Theorem 4.1.9. The forward implication from vertex

stability to matching-criticality is very similar to the argument in the previous paragraph, but

instead of the graphs T+(n, `) one considers graphs obtained from Turán graphs by inserting

(almost) perfect matchings into one of their partition classes. Omitting further details we

proceed to the backwards implication. It clearly suffices to treat families consisting of a single

graph.
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Lemma 4.2.4. Let F be a graph with χ(F ) = ` + 1 ≥ 3. If F is matching-critical, then F is

vertex-stable with respect to K`.

Proof. Given δ > 0 we choose ε, η > 0 and N0 ∈ N obeying the hierarchy N−1
0 � ε � η � δ.

Suppose that G is an F -free graph on n ≥ N0 vertices with at least
(
`−1
2` − ε

)
n2 edges. We are

to prove that G can be made `-partite by deleting at most δn vertices. Theorem 4.1.1 yields a

partition V (G) =
⋃
i∈[`] Vi such that

∑
i∈[`] |G[Vi]| ≤ ηn2. Set

Xi =

{
x ∈ Vi : there is j ∈ [`] \ {i} such that |Vj \N(x)| ≥ n

3`v(F )

}

for every i ∈ [`]. Since |G[Vi, Vj ]| ≥ |Vi||Vj | − 2ηn2 holds for all distinct i, j ∈ [`], we have

|Xi| ≤ 6(`− 1)`v(F )ηn ≤ δn/2` for every i ∈ [`].

Recall that there is a matching M such that χ(F −M) ≤ `. If for some i ∈ [`] there are

|M | independent edges e1, . . . , e|M | in G[Vi \Xi] we can find a copy of F in G where these edges

e1, . . . , e|M | play the rôle of M . So by F 6⊆ G such matchings do not exist and it follows that

for every i ∈ [`] there is a set Yi ⊆ Vi \Xi of size |Y | ≤ 2|M | covering all edges. Now the set

Q =
⋃
i∈[`](Xi ∪ Yi) has size at most δn/2 + 2`|M | ≤ δn and G−Q is `-partite.

4.2.3 Proof for cancellative hypergraphs and generalized triangles

The goal of this subsection is to deduce Theorem 4.1.10 from Theorem 4.1.7. We commence

by introducing a class Tr of Σr-free r-graphs which is larger than Krr.

For integers n ≥ r ≥ ` ≥ 1 we call an r-graph G on n vertices an (n, r, `)-system if every

`-subset of V (G) is contained in at most one edge. As shown in [232; 102; 208; 167; ?], the Turán
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problem for Σr is closely related to (n, r, r − 1)-systems. Given any r ≥ 3 we write Tr for the

class of all blowups of 2-covered (n, r, r−1)-systems. Since Kr
r is a 2-covered (r, r, r−1)-system,

we have Krr ⊆ Tr. Perhaps at first sight surprisingly, we shall apply Theorem 4.1.7 to F = Σr

and H = Tr. This choice of H is forced upon us due to the symmetrized stability assumption

and the following fact.

Lemma 4.2.5. For r ≥ 3 a Σr-free r-graph is symmetrised if and only if it is a proper blowup

of some 2-covered (n, r, r − 1)-system.

Proof. Suppose first thatH is a symmetrised Σr-free r-graph. Being a symmetrised hypergraph,

H is a proper blowup of some 2-covered r-graph T . If T fails to be a (v(T ), r, r − 1)-system,

then there are edges B,C ∈ T such that |B ∩ C| = r − 1. Since T is 2-covered, some edge

A ∈ T contains the two-element set B4C. Now {A,B,C} is a subgraph of T belonging to Σr,

contrary to H being Σr-free. This proves that T is indeed a (v(T ), r, r − 1)-system.

In the converse direction, proper blowups of 2-covered (n, r, r− 1)-systems are clearly sym-

metrised and an argument similar to the previous paragraph shows that they are Σr-free as

well.

Proceeding with our intended application of Theorem 4.1.7 we observe that due to being

closed under the formation of homomorphic images Σr is blow-up invariant. Moreover, Tr

is clearly hereditary and and the previous lemma shows that Σr is symmetrized-stable with

respect to Tr. So it remains to verify vertex-extendibility for r ∈ {3, 4}. As the following

lemma demonstrates, for this task we may restrict our attention to Krr rather than Tr.
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Lemma 4.2.6. For r ∈ {3, 4} there exists εr > 0 such that every H ∈ Tr with minimum degree

δ(H) > (r1−r − εr)nr−1 belongs to Krr.

Proof. Choose ε3, ε4 > 0 sufficiently small and suppose that for some r ∈ {3, 4} an r-graph

H ∈ Tr has n vertices and minimum degree at least
(
r1−r − εr

)
nr−1. Without loss of generality

we can suppose thatH is a proper blowup of some (not necessarily 2-covered) (m, r, r−1)-system

T with V (T ) = [m]. Write H = T [V1, . . . , Vm] and set xi = |Vi|/n for every i ∈ [m].

Since dH(v) = LLT (i)(x1, . . . , xm)n2 holds for all v ∈ Vi and i ∈ [m], the minimum

degree assumption yields LLT (i)(x1, . . . , xm) ≥ r1−r − εr for every i ∈ [m]. On the oth-

er hand, as every (r − 1)-subset of V (T ) in contained in at most one edge of T , we have∑
i∈[m] LLT (i)(x1, . . . , xm) ≤ LKr−1

m
(x1, . . . , xm). It follows that

(
r1−r − εr

)
m ≤

∑
i∈[m]

LLT (i)(x1, . . . , xm) ≤ λ(Kr−1
m ) =

(
m

r − 1

)
/mr−1. (4.2)

Now for r = 3 a sufficiently small choice of ε3 guarantees m ∈ {2, 3}; so T consists of a single

edge and H ∈ K3
3. In the 4-uniform case Equation 4.2 leads to m ∈ {4, 5}; since there exists no

2-covered (5, 4, 3)-system, the case m = 5 is impossible and thus we have indeed H ∈ K4
4.

Due to the lower bound π(Σr) ≥ r!/rr, which follows from the fact that r-graphs in Krr are

Σr-free, the next lemma will imply that for r ∈ {3, 4} the family Σr is vertex-extendable with

respect to Tr.
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Lemma 4.2.7. For every integer r ≥ 2 there exist ζ > 0 and N0 ∈ N such that every Σr-free

r-graph H on n ≥ N0 vertices which has minimum degree δ(H) ≥ (r1−r − ζ)nr−1 and possesses

a vertex v such H− v is Kr
r -colorable is Kr

r -colorable itself.

Proof. Given r ≥ 2 we choose appropriate constants ζ > 0 and N0 ∈ N fitting into the hierarchy

N−1
0 � ζ � r−1. Now let H be a Σr-free r-graph on n ≥ N0 vertices whose minimum degree is

at least (r1−r − ζ)nr−1. Set V = V (H) and suppose that some vertex v ∈ V has the property

that Hv = H− v is Kr
r -colorable. Fix a Kr

r -coloring V (Hv) =
⋃
i∈[r] Vi of Hv. Clearly

δ(Hv) ≥
(
r1−r − ζ

)
nr−1 − nr−2 ≥

(
r1−r − 2ζ

)
nr−1 (4.3)

and some easy calculations yield

|Vi| =
(

1/r ± ζ1/3
)
n for all i ∈ [r]. (4.4)

Claim 4.2.8. Every edge of H intersects every vertex class Vi in at most one vertex.

Proof. By symmetry it suffices to show |E ∩ V1| ≤ 1 for every E ∈ H. Assume for the sake of

contradiction that there exist distinct vertices w1, w
′
1 ∈ E∩V1. The (r−1)-graphsG1 = LHv(w1)

and G′1 = LHv(w
′
1) are (r−1)-partite with vertex partition V2∪· · ·∪Vr and by Equation 4.3 both

of them have at least the size (1/rr−1 − 2ζ)nr−1. Due to Equation 4.4 this implies |G1 ∩G′1| ≥

nr−1/2rr−1 and, in particular, there exists an edge e ∈ G1∩G′1. Now {E, e ∪ {w1}, e ∪ {w′1}} ∈

Σr contradicts the assumption that H is Σr-free.
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Since no edge of LH(v) can intersect all the partition classes V1, . . . , Vr we may assume

without loss of generality that at least d(v)/r edges of LH(v) are contained in V2 ∪ · · · ∪ Vr.

Claim 4.2.9. We have NH(v) ∩ V1 = ∅.

Proof. Suppose to the contrary that there exists a vertex u ∈ NH(v) ∩ V1 and consider an

edge E ∈ H containing {u, v}. Let Gu and Gv be the subgraphs of LH(u) and LH(v) induced

by
⋃
j∈[2,r] Vj respectively. Clearly, Gu is (r − 1)-partite and by Claim 4.2.8 Gv is (r − 1)-

partite as well. Moreover, Equation 4.3 yields |Gu| ≥
(
1/rr−1 − 2ζ

)
nr−1. Together with

|Gv| ≥ d(v)/r ≥
(
1/rr−1 − ζ

)
nr−1/r and Equation 4.4 this implies

|Gu ∩Gv| ≥
1

2r

nr−1

rr−1
.

But if e ∈ Gu ∩ Gv is arbitrary, then the subgraph {E, e ∪ {v}, e ∪ {u}} of H belongs to Σr,

contrary to H being Σr-free.

By Claim 4.2.8 and Claim 4.2.9 the partition V (H) =
⋃
i∈[r] V̂i defined by

V̂i =


V1 ∪ {v} if i = 1,

Vi if i ∈ [2, r],

is a Kr
r -coloring of H. This completes the proof of Lemma 4.2.7.
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We have thereby checked all assumptions of Theorem 4.1.7 and can conclude that for r ∈

{3, 4} the family Σr is degree-stable with respect to Tr. In view of Lemma 4.2.6 this implies

that Σr is degree-stable with respect to Krr as well.

4.2.4 Proof for hypergraph expansions

Throughout this subsection we fix two integers ` ≥ r ≥ 2 and an r-graph F with `+1 vertices

satisfying the assumptions of Theorem 4.1.12. Our goal is to conclude from Theorem 4.1.7 that

the family KF`+1 is indeed degree-stable with respect to Kr` .

Since the family KF`+1 is closed under taking homomorphic images, it is blowup-invariant

and, clearly, Kr` is hereditary. So it remains to show that KF`+1 is symmetrized-stable and

vertex-extendable with respect to Kr` . The fact that all members of Kr` are KF`+1-free implies

π(KF`+1) ≥ (`)r/`
r and thus our claim on symmetrized stability follows from the next statement.

Lemma 4.2.10. There exists some ε > 0 such that every symmetrized KF`+1-free r-graph H

with n vertices and |H| >
((

`
r

)
/`r − ε

)
nr is Kr

` -colorable.

Proof. We contend that every positive number ε satisfing

sup {λ(G) : G is F -free but not Kr
` -colorable}+ ε ≤

(
`

r

)
/`r

has the desired property. To see this we consider an arbitrary symmetrized KF`+1-free r-graph

H with n vertices and |H| >
((

`
r

)
/`r − ε

)
nr. Since H is symmetrized, there exists a 2-covered

hypergraph G such that H is a proper blow-up of G. Now |H| ≤ λ(G)nr yields
(
`
r

)
/`r−ε < λ(G).
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On the other hand, since H is KF`+1-free and G is 2-covered, G must be F -free. So our choice of

ε implies that G is Kr
` -colorable and, hence, so is H.

The next lemma implies that KF`+1 is vertex-extendable with respect to Kr` and thus con-

cludes the proof of Theorem 4.1.12.

Lemma 4.2.11. There exist ζ > 0 and N0 ∈ N such that every KF`+1-free r-graph H on n ≥ N0

vertices satisfying the minimum degree condition δ(H) >
((

`−1
r−1

)
/`r−1 − ζ

)
nr−1 and possessing

a vertex v such that H− v is Kr
` -colorable is Kr

` -colorable itself.

A slight modification of the proof below shows that this holds for HF
`+1 instead of the family

KF`+1 as well.

Proof. Choose N−1
0 � ζ � `−1 appropriately and let H be a KF`+1-free r-graph on n ≥ N0

vertices whose minimum degree is at least
((

`−1
r−1

)
/`r−1 − ζ

)
nr−1. Write V = V (H) and suppose

that Hv = H − v is Kr
` -colorable for some vertex v ∈ V . Consider a Kr

` -coloring
⋃
i∈[`] Vi =

V \ {v} of Hv and the associated blowup K̂r
` = Kr

` [V1, . . . , V`] of Kr
` . Sets in K̂r

` \Hv are called

missing edges of Hv; furthermore, for every u ∈ V sets in L
K̂r
`
(u) \ LHv(u) are called missing

edges of LHv(u).

Notice that

δ(Hv) ≥ δ(H)− nr−2 ≥
((

`− 1

r − 1

)
/`r−1 − 2ζ

)
nr−1. (4.5)
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Due to |H| ≥ nδ(H)/r >
((

`
r

)
/`r − ζ

)
nr we have, similarly,

|Hv| ≥ |H| − nr−1 ≥
((

`

r

)
/`r − 2ζ

)
nr. (4.6)

Consequently, the number of missing edges ofHv is at most 2ζnr. We proceed with the following

claim.

Claim 4.2.12. The following hold.

(a) We have |Vi| =
(
1/`± ζ1/3

)
n for every i ∈ [`].

(b) If i ∈ [`] and u ∈ V (Hv) \ Vi, then |Vi \NH(u)| ≤ ζ1/3n.

(c) For every u ∈ V (Hv) the number of missing edges of LHv(u) is at most ζ1/3nr−1.

The proof of our next claim exploits the fact that F fails to be 2-covered, i.e., that there

exist two distinct vertices u, v ∈ V (F ) such that uv 6∈ ∂r−2F . Indeed, if F has an isolated

vertex this is clear and if F ⊆ B(r, `+ 1) we can take u = 1 as well as v = r + 1.

Claim 4.2.13. We have |E ∩ Vi| ≤ 1 for all E ∈ H and i ∈ [`].

Proof. Otherwise we may assume, without loss of generality, that for some edge E there exist

two distinct vertices w1, w
′
1 ∈ E ∩ V1. By Claim 4.2.12 (a) and (b) for every i ∈ [2, `] the set

V ′i = Vi∩NH(w1)∩NH(w′1) satisfies |V ′i | > n/2`. Applying Lemma 5.3.23 with S = {w1, w
′
1} and

T = [2, `] we obtain vertices ui ∈ V ′i for i ∈ [2, `] such that the set U = {ui : i ∈ [2, `]} satisfies

H[U∪{w1}] ∼= H[U∪{w′1}] ∼= Kr
` . As F is not 2-covered, it is a subgraph ofH = H[U∪{w1, w

′
1}].

Thus H ∪ {E} is a weak expansion of F , contrary to H being KF`+1-free.
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Essentially it remains to be shown that NH(v) ∩ Vi = ∅ holds for some i ∈ [`]. Preparing

ourselves we first show the following weaker result.

Claim 4.2.14. There is no index i ∈ [`] such that NH(v) ∩ Vi 6= ∅ and |NH(v) ∩ Vj | ≥ 2ζ1/4rn

for all j ∈ [`] \ {i}.

Proof. By symmetry it suffices to deal with the case i = 1. Assume for the sake of contradiction

that there exists a vertex u1 ∈ NH(v) ∩ V1 and moreover, that |NH(v) ∩ Vj | ≥ 2ζ1/4rn for all

j ∈ [2, `]. We shall show that, contrary to the hypothesis, H contains a weak expansion of F .

If F has an isolated vertex, we observe that due to Claim 4.2.12 (b) for every j ∈ [2, `] the

set V ′j = Vj ∩NH(v) ∩NH(u1) has at least the size |V ′j | ≥ 2ζ1/4rn− ζ1/3n > ζ1/4rn. So we can

apply Lemma 5.3.23 to S = {u1} and T = [2, `], thus obtaining a set U = {uj : j ∈ [2, `]} with

uj ∈ V ′j for j ∈ [2, `] and H[U ∪ {u1}] ∼= Kr
` . For every i ∈ [`] let ei ∈ H be an edge containing

both ui and v. Since at least one vertex of F is isolated, H = H[U ∪ {u1}]∪ {ej : j ∈ [`]} is the

desired weak (`+ 1)-expansion of F .

So it remains to consider the case F ⊆ B(r, `+ 1). Pick an edge E ∈ H containing {v, u1}.

By Claim 4.2.13 we may assume that E is of the form {v, u1, . . . , ur−1}, where uj ∈ Vj holds

for all j ∈ [2, r − 1]. Claim 4.2.12 (b) tells us that for every k ∈ [r, `] the set

V ′k = Vk ∩NH(v) ∩

 ⋂
j∈[1,r−1]

NH(uj)



has at least the size |V ′k| ≥ 2ζ1/4rn − (r − 1)ζ1/3n > ζ1/4rn. For this reason Lemma 5.3.23

applied to S = {u1, . . . , ur−1} and T = [r, `] leads to a set U = {uk : k ∈ [r, `]} such that
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• uk ∈ V ′k for every k ∈ [r, `],

• H[U ] ∼= Kr
`−r+1,

• and LH(uj)[U ] ∼= Kr−1
`−r+1 for every j ∈ [r − 1].

Next we select for every k ∈ [r, `] an edge Ei ∈ H containing both uk and v. Now

H = H[U ∪ {u1, . . . , ur−1}] ∪ {E} ∪ {Ek : k ∈ [r, `]}

is a weak expansion of B(r, `+ 1) and, a fortiori, a weak expansion of F .

Let us now consider the set

S =
{
i ∈ [`] : |NH(v) ∩ Vi| ≥ 2ζ1/4rn

}
.

By Claim 4.2.14 we know, in particular, that S 6= [`]. Pick an arbitrary i? ∈ [`] \ S. Now

Claim 4.2.12 (a) and |dH(v)| ≥
((

`−1
r−1

)
/`r−1 − ζ

)
nr−1 imply S = [`] \ {i?} and a further

application of Claim 4.2.14 discloses NH(v) ∩ Vi? = ∅. Together with Claim 4.2.13 this shows

that the partition V (H) =
⋃
i∈[`] V̂i defined by

V̂i =


Vi? ∪ {v} if i = i?,

Vi if i 6= i?,

is a Kr
` -coloring of H. This completes the proof of Lemma 4.2.11.
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4.2.5 Expansions of Matchings of size 2.

In this subsection we shall derive Theorem 4.1.14 from Theorem 4.1.7. Again it is easy to

see that KM
r
2

2r is blowup-invariant and that the class Sr is hereditary. Bene Watts, Norin, and

Yepremyan proved in [17] that

sup {λ(G) : G is M r
2 -free but not semibipartite} < (1− 1/r)r−1

r!

holds for all r ≥ 4, where, let us recall, the numerator is the supremum of the edge densities

of semibipartite r-graphs. Following the proof of Lemma 4.2.10 one easily deduces from this

result that KM
r
2

2r is symmetrized-stable with respect to Sr. So it only remains to establish

vertex-extendibility, i.e., the following lemma.

Lemma 4.2.15. Let r ≥ 4 and F = M r
2 . There exist ζ > 0 and N0 ∈ N such that every

KF2r-free r-graph H on n ≥ N0 vertices satisfying δ(H) ≥
((

1− 1
r

)r−1
/(r − 1)!− ζ

)
nr−1 and

possessing a vertex v for which H− v is semibipartite is semibipartite itself.

In order to estimate the sizes of the vertex classes of semibipartite hypergraphs with almost

the maximum number of edges we use the following estimate.

Fact 4.2.16. If r ≥ 2 and x ∈ [0, 1], then

x(1− x)r−1

(r − 1)!
+

1

r!

(
1− 1

r

)r−3(
x− 1

r

)2

≤ 1

r!

(
1− 1

r

)r−1

.

Note that equality holds for x = 1/r and x = 1.
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Proof. The case x = 1 being clear we assume x ∈ [0, 1) from now on. The standard inductive

proof of Bernoulli’s inequality also shows (1 + 2h)(1 + h)r−2 ≥ 1 + rh for every real h ≥ −1. In

particular, for h = (x− 1/r)/(1− x) we obtain

(
1− 1/r

1− x

)r−2 1 + x− 2/r

1− x
≥ (r − 1)x

1− x
.

Multiplying by (1− x)r we deduce

(r − 1)x(1− x)r−1 ≤ (1− 1/r)r−2(1− x)(1 + x− 2/r)

= (1− 1/r)r−2[(1− 1/r)2 − (x− 1/r)2]

and now it remains to divide by (r − 1)(r − 1)!.

Proof of Lemma 4.2.15. Fix some sufficiently small ζ � r−1 and then some sufficiently large

N0 � ζ−1. Let H be a KF -free r-graph on n ≥ N0 vertices whose minimum degree is at least((
1− 1

r

)r−1
/(r − 1)!− ζ

)
nr−1. Set V = V (H) and suppose that for some vertex v ∈ V the r-

graph Hv = H−v is semibipartite. Fix a partition V (Hv) = V1∪V2 such that |E∩V1| = 1 holds

for every E ∈ Hv and let Ŝ be the complete semibipartite r-graph on V (Hv) corresponding to

this partition. Sets in Ŝ \ Hv are called missing edges of Hv, and for every u ∈ V \ {v} sets in

LŜ(u) \ LHv(u) are called missing edges of LHv(u).
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As usual we have

δ(Hv) ≥

((
1− 1

r

)r−1

/(r − 1)!− 2ζ

)
nr−1 and |Hv| ≥

((
1− 1

r

)r−1

/r!− 2ζ

)
nr.

In particular, the number of missing edges of Hv is at most 2ζnr.

Claim 4.2.17. The following statements hold.

(a) We have |V1| =
(
1/r ± ζ1/3

)
n and |V2| =

(
(r − 1)/r ± ζ1/3

)
n.

(b) For every u ∈ V (Hv) the number of missing edges of LHv(u) is at most ζ1/3nr−1.

(c) If u ∈ V1, then |V2 \NHv(u)| ≤ ζ1/3n.

(d) If u ∈ V2, then |NHv(u)| ≥
(
1− ζ1/3

)
n.

Proof. Setting x = |V1|/n we have

2ζ >
(1− 1/r)r−1

r!
− |Ŝ|
nr

>
(1− 1/r)r−1

r!
− x(1− x)r−1

(r − 1)!

and due to ζ � r−1 Fact 4.2.16 leads to |x − 1/r| ≤ Or(ζ
1/2) ≤ ζ1/3, which proves (a).

Moroever, in Ŝ every vertex has degree
((

1− 1
r

)r−1
/(r − 1)!±Or(ζ1/2)

)
nr−1 and thus for

every u ∈ V (Hv) there are at most Or(ζ
1/2)nr−1 missing edges of LHv(u), which implies (b).

Now for part (c) it suffices to observe that every vertex in |V2 \ NHv(u)| belongs to Ωr(n
r−2)

missing edges of LHv(u) and the argument for (d) is similar.

Since H contains no weak expansion of M r
2 , there cannot exist two disjoint edges E,E′ ∈ H

such that E ∪ E′ is 2-covered.
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Claim 4.2.18. If two distinct vertices u,w ∈ V (H) satisfy

|LH(u)[V2]|, |LH(w)[V2]| ≥

((
1− 1

r

)r−1

/(r − 1)!− ζ1/4

)
nr−1,

then no edge of H contains both of them.

Proof. Assume contrariwise that some edge E ∈ H contains u and w. We shall show that this

leads to two disjoint edges Eu, Ew of H such that u ∈ Eu ⊆ V2 ∪ {u}, w ∈ Ew ⊆ V2 ∪ {w}, and

Eu ∪ Ew is 2-covered, which is absurd.

Owing to Claim 4.2.17 (a) and our assumption on the links of u and w we have

|V2 \NH(u)|, |V2 \NH(w)| ≤ ζ1/5n.

The latter estimate and our lower bound on |LH(u)[V2]| show that there exists an edge Eu ∈ H

such that u ∈ Eu and Eu \ {u} ⊆ V2 ∩ NH(w). Now Claim 4.2.17 (d) and our upper bound

on |V2 \NH(u)| imply that the set V ′2 =
⋂
x∈Eu NH(x) ∩ (V2 \ Eu) has at least the size |V ′2 | ≥

|V2| − 2ζ1/5n. Thus there exists an edge Ew ∈ Hv with w ∈ Ew ⊆ V ′2 ∪ {w}. Clearly Eu and

Ew are as desired.

By our lower bound on δ(Hv) any two distinct vertices u,w ∈ V1 satisfy the hypothesis of

Claim 4.2.18, which has the following consequence.

Claim 4.2.19. We have |E ∩ V1| ≤ 1 for every E ∈ H.
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Notice that dH(v) ≥
((

1− 1
r

)r−1
/(r − 1)!− ζ

)
nr−1 yields

|NH(v)| ≥ (1− 1/r −Or(ζ))n ≥ 2n/3,

whence

|NH(v) ∩ V2| ≥ 2n/3− |V1| ≥ n/3. (4.7)

If there exists no edge E? ∈ H with v ∈ E? ⊆ V2 ∪ {v}, then V (H) = V1 ∪ (V2 ∪ {v}) is

a partition exemplifying that H is semibipartite and we are done. So we may suppose from

now on that such an edge E? exists. Consider the set X =
⋂
w∈E? NH(w). On the one hand,

Claim 4.2.17 (d) and Equation 4.7 imply

|X ∩ V2| ≥ |NH(v) ∩ V2| − (r − 1)ζ1/3n ≥ n/3− n/12 = n/4.

On the other hand, there cannot exist an edge E′ ⊆ X \ E?, for then {E?, E′} would be a

matching in H such that E? ∪E′ is 2-covered. Since there are at most 2ζnr missing edges, this

implies |X ∩ V1| ≤ Or(ζ)n ≤ ζ1/3n. As Claim 4.2.17 (d) yields |NH(v) \X| ≤ (r − 1)ζ1/3n, we

may conclude

|NH(v) ∩ V1| ≤ |NH(v) \X|+ |X ∩ V1| ≤ rζ1/3n,
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whence

|LH(v)[V2]| ≥ dH(v)− |NH(v) ∩ V1|nr−2 ≥
(

(1− 1/r)r−1 /(r − 1)!− ζ1/4
)
nr−1.

Now Claim 4.2.18 discloses NH(v)∩V1 = ∅. In view of Claim 4.2.19 this shows that the partition

V (H) = (V1 ∪ {v}) ∪ V2 witnesses the semibipartiteness of H.

4.3 Concluding remarks

• In this chapter we provided a framework for proving the degree-stability of certain classes

of graph and hypergraph families, and applied it to the degree-stability of Σ3, Σ4, and KF` for

some combinations of F and `. In fact, one could push our results further and show that T3,

T4, and HF
` (for some combinations of F and `) are degree-stable by using the degree-stability

results obtained here, applying the Removal lemma to prove the vertex-stability of T3, T4, and

HF
` , respectively, and finally applying Theorem 4.1.8.

• Generalizing Theorem 4.1.9 one may attempt to characterize for arbitrary ` ≥ r ≥ 2 the

hypergraph families which are vertex-stable or degree-stable with respect to Kr` . This problem

is presumably very difficult and even partial results in this direction would be interesting.

• A classical example in hypergraph Turán theory suggested by Vera T. Sós is the Fano

plane, i.e. the 3-graph on vertex set [7] with edge set

{123, 345, 561, 174, 275, 376, 246}.
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The Turán density of the Fano plane was determined by De Caen and Füredi in [50]. Later

Keevash and Sudakov [142] and, independently, Füredi and Simonovits [113] proved the degree-

stability of the Fano plane and used it to determine the Turán number for large n. The

complete determination of its Turán number was obtained only recently by Bellmann and the

third author [16]. We do not know whether our method can be used to give another proof of

the degree-stability of the Fano plane.

• Recall that by Theorem 4.1.1 every family F of graphs with χ(F) = ` + 1 is edge-stable

with respect to the family {T (n, `) : n ∈ N} of Turán graphs, which has the property that for

every n ∈ N it contains a unique n-vertex graph. This state of affairs prompted the second

author [193] to define for every nondegenerate family F of r-graphs the (edge-) stability number

ξe(F) to be the least number t such that there exists a class of r-graphs H with the following

properties:

• F is edge-stable with respect to H;

• for every n ∈ N there are t hypergraphs on n vertices in H.

For instance, the families studied in this article have stability number 1 and standard con-

jectures imply that the stability number of K3
4 is infinite. It was shown recently [169; ?] that

for every t ∈ N there exists a family Mt of triple systems such that ξe(Mt) = t.

In analogy with Definition 4.1.2 one can also define a vertex-stability number ξv(F) and a

degree-stability number ξd(F). These satisfy the easy estimates ξe(F) ≤ ξv(F) ≤ ξd(F) and it

would be interesting to study how “exotic” these parameters can get.
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• Our method can also be used in the context of other combinatorial structures, such as

families of edge-weigthed graphs. To give an example, we recall the following result of Erdős,

Hajnal, Sós, and Szemerédi [68] from Ramsey-Turán theory: For r ≥ 2 every K2r-free graph

with n vertices and more than
(

3r−5
3r−2 +o(1)

)
n2/2 edges contains an independent set of size o(n).

Here the constant 3r−5
3r−2 is optimal and the analogous problem with forbidden cliques of odd order

is much easier. The proof of this result involves a certain family F2r of graphs with weights from

{0, 1/2, 1} assigned to their edges. The main points of the argument are (i) that π(F2r) = 3r−5
3r−2

and (ii) that the regularity method establishes a connection between F2r and K2r. Lüders and

Reiher [180] recently obtained the sharper result that for δ � r−1 every K2r-free graph with n

vertices and more than
(

3r−5
3r−2 + δ− δ2

)
n2/2 edges contains an independent set of size δn, where

the term 3r−5
3r−2 +δ−δ2 is again optimal. Their proof requires some stability result for the family

F2r. In fact, they provide a rather ad-hoc proof of vertex-stability (see Proposition 5.5 in [180])

and returned to the topic in [181] proving degree-stability. A straightforward adaptation of the

Ψ-trick to weighted graphs yields an alternative (and shorter) proof of the degree-stability of

F2r.

• We would like to emphasize that the strongest general stability result in this article,

Theorem 4.2.3, can also be used for giving reasonable quantitative versions of edge stability.

For instance, combined with the results in Subsection 4.2.3 it tells us that if ε > 0 is sufficiently

small, then every Σ4-free quadruple system H on a sufficiently large number n of vertices with

more than (1/256−ε)n4 edges admits a partition V (H) = A∪B∪C∪D∪Z such that |Z| ≤ ε1/2n

and H− Z is 4-partite with vertex classes A, B, C, and D. Moreover, all vertices in V (H) \ Z
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have at least the degree (1/64 − 2ε1/2)n3. Now a careful calculation shows |A|, |B|, |C|, |D| =

(1/4±6ε1/2)n and the proof of Claim 4.2.8 discloses that the setsA, B, C, andD are independent

in ∂2H. By the proof of Claim 4.2.9, if some z ∈ Z satisfies |LH(z)[A,B,C]| ≥ 4ε1/2n3, then z

has no neighbours in D. So H can be made 4-partite by the deletion of at most 17εn4 edges,

namely (i) at most εn4 edges with two or more vertices in Z; (ii) at most 4εn4 edges zabc with

z ∈ Z, a ∈ A, b ∈ B, c ∈ C, and |LH(z)[A,B,C]| ≥ 4ε1/2n3; (iii) and, similarly, at most 4εn4

edges of each of the three the three types zabd, zacd, zbcd. In particular, the edge stability

of Σ4 with respect to K4
4 holds with a linear dependence between the error terms. Taking into

account that at most 400εn vertices v ∈ V (H) can satisfy dH(v) ≤ n3/80 one can show the

stronger result that H can be made K4
4 -colorable by the deletion of 7000ε3/2n4 edges, which

seems to be a new result.



CHAPTER 5
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5.1 Introduction

The classical Erdős–Stone theorem with the Erdős–Simonovits stability theorem imply that

every graph family F is stable with respect to the Turán graph T (n, χ(F)− 1). However, there

are many Turán problems for hypergraphs that (perhaps) do not have the stability property.

The example K3
4 we mentioned in Chapter 2 was shown to have exponentially many extremal

constructions in the number of vertices (see Kostochka [151] and Brown [32]). We will prove

(Proposition 5.1.1) that these constructions can be used to show that K3
4 does not have the

stability property (assuming Conjecture 2.1.1 is true). For K3
` with ` ≥ 5, different near-

extremal constructions were given by Sidorenko [228], and Keevash and Mubayi [135]. Although

we do not provide the details, these also show that K3
` does not have stability (assuming

Conjecture 2.1.1 is true).

The absence of stability seems to be a fundamental barrier in determining the Turán numbers

of some families. Indeed, the Turán numbers of the examples we presented above are not known,

even asymptotically, and in fact, no Turán number of a family without the stability property

has been determined.

This chapter provides the first such example. In Section 5.1.1, we construct a finite familyM

of 3-graphs, prove thatM does not have the stability property, and determine π(M), and even

ex(n,M) for infinitely many n (Theorems 5.1.4 and 5.1.7). In Section 5.1.2, we construction

a finite family Mt of 3-graphs for every integer t and prove that Mt has exactly t different

extremal configurations. In Section 5.1.3, we extend this construction to r-graphs for all r ≥ 4.
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In order to state our results formally, we need some definitions. Let ` ≥ r ≥ 2 and Kr`+1 be

the collection of all r-graphs F on at most (` + 1) + (r − 2)
(
`+1

2

)
vertices such that for some

(`+ 1)-set S, which will be called the core of F , every pair {u, v} ⊂ S is covered by an edge in

F 1.

Suppose that T is an r-graph on s vertices and t = (t1, . . . , ts) with each ti a positive integer.

Then the blowup T (t) of T is obtained from T by replacing each vertex i by a set of size ti,

and replacing every edge in T by the corresponding complete r-partite r-graph.

A family F is t-stable if there exist t near-extremal constructions, and every F-free graph

(or hypergraph) of size close to ex(n,F) is structurally close to one of these near-extremal

constructions. The stability number of F , denoted by ξ(F), is the minimum integer t such that

F is t-stable. If there is no such integer t, then we let ξ(F) =∞.

Although the concept of t-stable families was raised over a decade ago (see [193] and [208]),

no example of t-stable families are known for any t ≥ 2 before this work. However, if we assume

that Turán’s conjecture is true, then the following result shows that the stability number of K3
4

is infinity.

Proposition 5.1.1. If Conjecture 2.1.1 is true, then ξ(K3
4 ) =∞.

1 The original definition of Kr`+1 in [191] requires that F has at most
(
`+1
2

)
edges. The new definition we used here

will make our proofs simpler. Notice that Kr`+1 is a finite family in both definitions.
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5.1.1 A 2-stable family of 3-graphs

In this section we construct a finite familyM of 3-graphs that is 2-stable. Let us define the

two extremal configurations first.

Definition 5.1.2. Let |A| = bn/3c and |B| = d2n/3e with A ∩B = ∅. Define

G1
n =

{
abb′ : a ∈ A and {b, b′} ⊂ B

}
.

Let G2
6 be the 3-graph with vertex set [6] whose complement is

G2
6 = {123, 126, 345, 456}.

For n > 6 let G2
n be a 3-graph on n vertices which is a blowup of G2

6 with the maximum number

of edges.

Remarks.

• Notice that G1
n is a (unbalanced) blowup of a star.

• Simple calculations show that each part in G2
n has size either bn/6c or dn/6e.

• For i = 1, 2, let gi(n) = |Gin|. Then limn→∞ gi(n)/n3 = 2/27.

Definition 5.1.3. The family M is the union of the following three finite families.

(a) M1 is the set containing the complete 3-graph on five vertices with one edge removed,

M1 =
{
K3−

5

}
.



173

a
b

b′

A

B

(a) The 3-graph G1n.

1 2

45

6 3

(b) The complement of G26 .

Figure 14. G1 and G2
6 .

(b) M2 is the collection of all 3-graphs in K3
7 with a core whose induced subgraph has transver-

sal number at least two.

(c) M3 is the collection of all 3-graphs F ∈ K3
6 such that both F 6⊂ G1

n and F 6⊂ G2
n for all

positive integers n.

Our first result is about the Turán number of M.

Theorem 5.1.4. The inequality ex(n,M) ≤ 2n3/27 holds for all positive integers n. Moreover,

equality holds whenever n is a multiple of six.

Note that both G1
n and G2

n are M-free and g1(n) ∼ g2(n) ∼ 2n3/27. Moreover, it is easy to

see that transforming G1
n to G2

n requires us to delete and add Ω(n3) edges. Indeed, ∂G1
n contains

a clique on b2n/3c vertices, whereas ∂G2
n has clique number six. By Turán’s theorem, one must
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thus delete strictly more that (1− π(K7))
(b2n/3c

2

)
= Ω(n2) edges from ∂G2

n to obtain a copy of

∂G2
n. Since every edge in ∂G1

n is covered by Ω(n) edges in G1
n, we need to remove at least Ω(n3)

edges from G1
n before getting G2

n. So this proves that M does not have the stability property

(in the sense of Theorem 4.1.1).

Our next result gives further detail about near-extremal M-free constructions by showing

that M is 2-stable with respect to G1
n and G2

n. More precisely, it shows that ξ(M) = 2.

Definition 5.1.5. Let H be a 3-graph. Then H is called semibipartite if V (H) has a partition

A ∪ B such that |E ∩ A| = 1 and |E ∩ B| = 2 for all E ∈ H, and H is called G2
6-colorable if it

is a subgraph of a blowup of G2
6 .

With some calculations one can get the following observation.

Observation 5.1.6. Let H be a 3-graph on n-vertices. If H is semibipartite, then |H| ≤ g1(n).

If H is G2
6-colorable, then |H| ≤ g2(n).

Theorem 5.1.7 (2-stability). There exist an absolute constant ε > 0 such that the following

holds for all sufficiently large n. Every M-free 3-graph on n vertices with minimum degree at

least (4/9− ε)
(
n
2

)
is either semibipartite or G2

6-colorable. Consequently, ξ(M) = 2.

Note that Theorem 5.1.7 is stronger than the requirement in the definition of 2-stability

since removing at most δn vertices implies that the number of edges removed is at most δn3

but not vice versa.

Theorem 5.1.4 together with Theorem 5.1.7 yield the following result.
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Theorem 5.1.8. The set projΩ(M) = [0, 1], and g(M, x) ≤ 4/9 for all x ∈ [0, 1]. Moreover,

g(M, x) = 4/9 iff x ∈ {5/6, 8/9}.

In words, Theorem 5.1.8 says that M-free 3-graphs can have any possible shadow density

but the edge density is maximized for exactly two values of the shadow densities (see Figure 15).

( 2
3
, 1
4

)

1/2

4/9

5
6

8
9 1

x

y

Figure 15. g(M) has exactly two global maxima.

5.1.2 t-stable families of 3-graphs

Our main result in this section is that there exists a finite family Mt of 3-graphs that is

t-stable for every positive integer t.

Theorem 5.1.9. For every positive integer t there exist constants 0 < n1 < · · · < nt, 0 <

λt < 1/6, t triple systems G1, . . . ,Gt with v(Gi) = ni for i ∈ [t], and a finite family Mt of triple

systems with the following properties.
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(a) The inequality ex (n,Mt) ≤ λtn3 holds for all positive integers n, and moreover, equality

holds whenever n is a multiple of ni for some i ∈ [t].

(b) For every δ > 0 there exist ε > 0 and N0 so that the following holds for all n ≥ N0.

Every Mt-free triple system H on n vertices with at least (λt − ε)n3 edges can be made

Gi-colorable for some i ∈ [t] by removing at most δn vertices. Moreover, ξ(Mt) = t.

Using Theorem 5.1.9 we obtain the following result.

Theorem 5.1.10. For every positive integer t there exist constants 0 < n1 < · · · < nt, 0 < λt <

1/6, and a finite family Mt of triple systems such that projΩ(Mt) = [0, 1], and g(Mt, x) ≤ 6λt

for all x ∈ [0, 1]. Moreover, g(Mt, x) = 6λt if and only if x = 1− 1/ni for some i ∈ [t].

10

y

x

6λt

n1−1
n1

n2−1
n2

· · · nt−1
nt

(1, 1)

Figure 16. The function g(Mt) has exactly t global maxima.
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Roughly speaking, the connection between these results is as follows. An r-graph is a star

if there is a vertex v such that all edges contain v, and an r-graph H is semibipartite if it is

S-colorable for some star S. Note that this is the same as saying that V (H) has a partition

into two parts A and B such that all edges have exactly one vertex in A and r − 1 vertices

in B. We will see later that our definition of Mt ensures that every semibipartite 3-graph

is Mt-free. By shrinking A, the shadow density of an n-vertex semibipartite 3-graph H can

be made arbitrarily close to 1 as n → ∞, so projΩ(Mt) = [0, 1]. The shadows of the triple

systems G1, . . . ,Gt from Theorem 5.1.9 are complete graphs and thus their edge densities are the

distinct numbers 1− 1/n1, . . . , 1− 1/nt. So g(Mt, x) = 6λt holds if x is one of those densities

and stability allows us to exclude further solutions to this equation.

5.1.3 t-stable families of r-graphs

In this section, we extend the result in the previous section to r-graphs for all r ≥ 4.

Theorem 5.1.11. For every r ≥ 4 and t ≥ 1 there exist constants 0 < n1 < · · · < nt,

0 < λ
(r)
t < 1/r!, a family {Gr1 , . . . ,Grt } of r-graphs with v(Gri ) = ni + r − 3 for i ∈ [t], and a

finite family Mr
t of r-graphs such that the followings hold.

(a) The inequality ex (n,Mr
t ) ≤ λ

(r)
t nr holds for all positive integers n, and moreover, equality

holds whenever n satisfies r | n and rni | 3n for some i ∈ [t].

(b) For every δ > 0 there exist ε > 0 and N0 so that the following holds for all n ≥ N0.

Every Mr
t -free r-graph H on n vertices with at least (λ

(r)
t − ε)nr edges is Gri -colorable

after removing at most δn vertices. Moreover, ξ(Mr
t ) = t.
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Consequently, we obtain the following result about the feasible region of Mr
t .

Theorem 5.1.12. For every r ≥ 4 and t ≥ 1 there exist constants 0 < n1 < · · · < nt,

0 < λ
(r)
t < 1/r!, and a finite family Mr

t of r-graphs such that projΩ(Mr
t ) = [0, x̂] for some

constant x̂ ∈ (0, 1], and g(Mr
t , x) ≤ r!λ

(r)
t for all x ∈ [0, x̂]. Moreover, g(Mr

t , x) = r!λ
(r)
t iff

x ∈ {x1, . . . , xt}, where

xi =
(r − 1)!

rr−1

(
(r − 3)rrλ

(r)
t +

9

2

(
1− 1

ni

))
< x̂, ∀i ∈ [t].

Remark. It seems nontrivial to determine the exact value of x̂. Here we show a lower bound

for x̂ which is obtained by optimizing the shadow density of a blow-up Grt .

Let V be a set of size n and V =
⋃
i∈[nt+r−3] Vi be a partition with |Vi| = (1+o(1)) (1/r − δ)n

for i ∈ [r− 3] and |Vi| = (1 + o(1)) (3/r + (r − 3)δ)n/ni for i ∈ [r− 2, nt + r− 3]. Let H be the

blow-up of Grt on V . Then

lim
n→∞

|∂H|
nr−1

= (r − 3)

(
1

r
− δ
)r−4

λt

(
3

r
+ (r − 3)δ

)3

+

(
1

r
− δ
)r−3 nt − 1

2nt

(
3

r
+ (r − 3)δ

)2

.
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Letting A = 27(r−3)λt
rr−1 and B = 9

2rr−1

(
1− 1

nt

)
, we obtain

lim
n→∞

|∂H|
nr−1

> A(1− rδ)r−4

(
1 +

r(r − 3)

3
δ

)3

+B(1− rδ)r−3

(
1 +

r(r − 3)

3
δ

)2

≥ A(1− r(r − 4)δ) (1 + r(r − 3)δ) +B(1− r(r − 3)δ)

(
1 +

2r(r − 3)

3
δ

)
≥ A

(
1 + rδ − r4δ2

)
+B

(
1− r(r − 3)

3
δ − r4δ2

)
> A+B + rAδ − r(r − 3)

3
Bδ − (A+B)r4δ2.

Since rA > r(r−3)
3 B, if δ > 0 is sufficiently small, then

x̂ ≥ (r − 1)! lim
n→∞

|∂H|
nr−1

> (A+B)(r − 1)! = xt.
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5.2 Proof for the 2-stable family

We prove Theorems 5.1.4, 5.1.7 and 5.1.8 in this section. Let us present some preliminary

definitions and results first.

5.2.1 Preliminaries

The next standard lemma gives a relationship between λ(T ) and the size of a blowup of T .

Lemma 5.2.1. Let r ≥ 2 and T and H be two r-graphs. Suppose that H is a blowup of T with

v(H) = n. Then |H| ≤ λ(T )nr.

Proof. Suppose that |V (T )| = s and H = T (t) for some t = (t1, . . . , ts). Then

|H| =
∑
E∈T

∏
i∈E

ti = nr
∑
E∈T

∏
i∈E

ti
n
≤ λ(T )nr,

where the last inequality follows from the definition of λ(T ) and
∑

i∈[s] ti = n.

The following lemma shows that M is blowup-invariant.

Lemma 5.2.2. A 3-graph H is M-free if and only if it is M-hom-free.

Proof. The backward implication is clear. Now suppose conversely that H fails to be M-hom-

free, i.e., that there is a homomorphism f : V (F ) → V (H) for some F ∈ M. If F ∼= K3−
5 ,

then f is injective due to the fact that K3−
5 is 2-covered. However, this implies that K3−

5 ⊂ H,

a contradiction. Therefore, F ∈ M2 ∪M3. Clearly the restriction of f to the core S of F is

injective. So f(F ) ∈ K3
|S| ∩M and in view of f(F ) ⊂ H it follows that H fails to be M-free.

Lemma 5.2.3. Suppose that T is a 3-graph with at most four vertices. Then λ(T ) ≤ 1/16.
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Proof. Without loss of generality we may assume that v(T ) = 4 and |T | = 4, i.e., T ∼= K3
4 . It

is easy to see that

pK3
4
(x) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 ≤ 4(1/4)3 = 1/16.

Therefore, λ(T ) ≤ 1/16.

Lemma 5.2.4. Suppose that T is a 3-graph on five vertices with at most eight edges. Then

λ(T ) < 0.067277.

Lemma 5.2.5. λ(G2
6) ≤ 2/27.

Proof. Notice that

pG26 (x1, . . . , x6) = x3x6(x1 + x2 + x4 + x5)

+ (x1 + x2)(x3 + x6)(x4 + x5) + x1x2(x4 + x5) + x4x5(x1 + x2).

Set a = (x3 +x6)/2, b = (x1 +x2)/2, c = (x4 +x5)/2, d = (b+c)/2. It follows from the AM-GM

inequality that

pG26 (x1, . . . , x6) ≤ 2a2(b+ c) + 8abc+ 2bc(b+ c) ≤ 4a2d+ 8ad2 + 4d3

= 2 ((a+ d) · (a+ d) · 2d)

≤ 2

(
(a+ d) + (a+ d) + 2d

3

)3

=
2

27
.
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Lemma 5.2.6. Let T be a 2-covered 3-graph on k ≥ 7 vertices. Suppose that τ(T [S]) ≤ 1 for

all sets S ⊂ V (T ) with |S| = 7. Then T is a star.

Remark. In fact, a weaker condition that |S| = 6 is sufficient for the proof of Lemma 5.2.6.

Proof. Suppose that T is not a star. Then for every vertex v in T there exists an edge Ev in

T that does not contain v.

First notice that T cannot contain two disjoint edges. Therefore, T is intersecting. Suppose

that T contains two edges E1 = {u, v1, v2} and E2 = {u,w1, w2}, where {v1, v2}∩{w1, w2} = ∅.

Let E3 ∈ T be an edge that does not contain u. Since T is intersecting, we may assume that

v1, w1 ∈ E3. Then, we have |E1 ∪ E2 ∪ E3| ≤ 6, and τ({E1, E2, E3}) = 2, a contradiction.

Therefore, we may assume that the intersection of every two edges in T has size two. Let E1 =

{u, v, w1} and E2 = {u, v, w2} be two edges in T . By assumption there exists an edge E3 ∈ T

that does not contain u and, hence, we have E3 = {v, w1, w2}. Similarly there exists E4 ∈ T that

does not contain v and, hence, we have E4 = {u,w1, w2}. Then, we have |E1∪E2∪E3∪E4| = 4,

and τ({E1, E2, E3, E4}) = 2, a contradiction.

5.2.2 Proof of Theorem 5.1.4

In this section we complete the proof of Theorem 5.1.4.

Proof of Theorem 5.1.4. Let H be anM-free 3-graph on n vertices. By Theorem 4.1.4, we may

assume that H is symmetrized. Let T ⊂ V (H) such that T contains exactly one vertex from
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each equivalent class in H, and let T = H[T ]. Since H is a blowup of T , by Lemma 5.2.1, it

suffices to show that λ(T ) ≤ 2/27. Next, we will consider two cases depending on the size of

T : either |T | ≥ 7 or |T | ≤ 6.

Case 1: |T | ≥ 7.

Since T is 2-covered and it is M2-free, τ(T [S]) ≤ 1 for all S ⊂ T with |S| = 7, and it follows

from Lemma 5.2.6 that T is a star.

Let us calculate λ(T ). We may assume that V (T ) = [s] for some integer s and 1 is the

center of T . Then,

pT (x) ≤ x1

 ∑
{i,j}⊂[s]\{1}

xixj

 ≤ s− 2

2(s− 1)
x1(1− x1)2 <

1

2
x1(1− x1)2 ≤ 2

27
,

which implies that λ(T ) < 2/27.

Case 2: |T | ≤ 6.

If |T | ≤ 5, then Lemmas 5.2.3 and 5.2.4 imply that λ(T ) < 0.67277. So we may assume that

|T | = 6.

Since T is 2-covered, T ∈ K3
6. Since H does not contain any member in M3 as a subgraph,

either T ⊂ G1
n or T ⊂ G2

n for some n ≥ 6. Due to the fact that T is 2-covered again, either

T is a star or T ⊂ G2
6 . The former case has been handled by Case 1, so we may assume that

T ⊂ G2
6 , and it follows from Lemma 5.2.5 that λ(T ) ≤ λ(G2

6) ≤ 2/27.
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5.2.3 Proof of Theorem 5.1.7

Let G1 be the collection of all semibipartite 3-graphs and let G2 be the collection of all

G2
6 -colorable 3-graphs. According to Theorem 4.1.7, it suffices to prove the vertex-extendability

of M with respects to G1 and G2.

Lemma 5.2.7. The family M is vertex-extendable with respects to G1.

We will use the following stability theorem due to Füredi, Pikhurko, and Simonovits [112]

to prove Lemma 5.2.7.

Let F3,2 be the 3-graph with vertex set [5] and edges set {123, 124, 125, 345}. Füredi,

Pikhurko, and Simonovits [112] proved that if n is sufficiently large, then G1
n is the unique

F3,2-free 3-graph on n vertices with the maximum number of edges. Moreover, they proved the

following strong stability result.

Theorem 5.2.8 (Füredi–Pikhurko–Simonovits [112]). Let γ ≤ 1/125 be fixed and n ≥ n0. Let

H be an F3,2-free 3-graph on n vertices with δ(H) > (4/9− γ)
(
n
2

)
. Then H is semibipartite.

Proof of Lemma 5.2.7. LetH be an (n+1)-vertexM-free 3-graph with δ(H) ≥
(

4
9 − ε

) (
n
2

)
. Let

v ∈ V (H) such that H′ = H−v is semibipartite. We need to prove that H is also semibipartite.

Let A∪B = V (H) \ {v} be a partition such that every edge in H′ has exactly one vertex in

A.

Claim 5.2.9. We have ||A| − n/3| < ε1/2n and ||B| − 2n/3| < ε1/2n.
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Proof. Let β = |B|. Since H′ is semibipartite,

|H′| ≤ (n− β)

(
β

2

)
.

On the other hand, it is easy to see from the minimum degree assumption that |H′| ≥ (4/9 −

ε)
(
n
3

)
. Therefore,

(4/9− ε)
(
ñ

3

)
≤ (n− β)

(
β

2

)
,

which implies that (2/3− ε1/2)n < β < (2/3 + ε1/2)n.

Claim 5.2.10. We have |N(v) ∩B| ≥
(
1/3− 2ε1/2

)
n.

Proof. By assumption, we have

(
|N(v)|

2

)
≥ d(v) ≥

(
4

9
− ε
)(

n

2

)
,

which implies that |N(v)| ≥ (2/3− ε)n. By Claim 5.2.9, |A| ≤ (1/3 + ε1/2)ñ, and hence

|N(v) ∩B| ≥ (2/3− ε)n−
(

1/3 + ε1/2
)
n >

(
1/3− 2ε1/2

)
n.

Claim 5.2.11. For every vertex w ∈ V (H) \ {v} we have |N(w) ∩B| ≥ |B| − 4ε1/2n.
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Proof. Case 1: w ∈ A.

Let Zw = B \ N(w) and zw = |Zw|. If follows from our assumption d(v) ≥
(

4
9 − ε

) (
n
2

)
and

Claim 5.2.9 that

1

2

(
2

3
+ ε1/2 − zw

)2

n2 ≥
(
|B \ Zw|

2

)
≥
(

4

9
− ε
)(

n

2

)
.

It follows that zw ≤ 2ε1/2n.

Case 2: w ∈ B.

Let Zw = V (H) \N(w) and zw = |Zw|. If follows from our assumption d(v) ≥
(

4
9 − ε

) (
n
2

)
and

Claim 5.2.9 that

(
1

3
+ ε1/2

)(
2

3
+ ε1/2 − zw

)
≥ |A \ Zw||B \ Zw| ≥

(
4

9
− ε
)(

n

2

)
.

It follows that zw ≤ 4ε1/2n.

We may assume that H contains a copy of F3,2, since otherwise by Theorem 5.2.8 we are

done. Let S ⊂ V (H) be a set of size 5 such that F3,2 ⊂ H. Observe that v ∈ S. Let

{w1, w2, w3, w4} = S \ {v}. Define B′ = B ∩ N(v) ∩
(⋂

j∈[4]N(wj)
)

. Then Claims 5.2.10

and 5.2.11 imply that |B′| ≥
(
1/3− ε1/2

)
n − 4 × 4ε1/2n > n/6. Fix a vertex u ∈ A (it is

possible that u ∈ {w1, w2, w3, w4}). that there exists an edge w5w6 ∈ L(u)[B′]. Let E ⊂ H be

a set of edges of size at most 10 that covers all pairs in {v, w1, w2, w3, w4} × {w5, w6}, and let

F = H[{v, w1, w2, w3, w4}] ∪ {uw5w6} ∪ E. Then it is easy to see that F is a member in M2

(since F3,2 ⊂ H[{v, w1, w2, w3, w4}] has transversal number at least two), a contradiction.
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Lemma 5.2.12. The family M is vertex-extendable with respects to G2.

Recall the following lemma.

Lemma 5.2.13. Fix a real η ∈ (0, 1) and integers m,n ≥ 1. Let G be a 3-graph with vertex

set [m] and let H be a further 3-graph with v(H) = n. Consider a vertex partition V (H) =⋃
i∈[m] Vi and the associated blowup Ĝ = G[V1, . . . , Vm] of G. If two sets T ⊆ [m] and S ⊆ V

(we allow S to contain vertices from Vi for i ∈ T ) have the properties

(a) |Vj | ≥ (|S|+ 1)|T |η1/3n+ |S| for all j ∈ T ,

(b) |H[Vj1 , Vj2 , Vj3 ]| ≥ |Ĝ[Vj1 , Vj2 , Vj3 ]| − ηn3 for all {j1, j2, j3} ∈
(
T
3

)
, and

(c) |LH(v)[Vj1 , Vj2 ]| ≥ |LĜ(v)[Vj1 , Vj2 ]| − ηn3 for all v ∈ S and {j1, j2} ∈
(
T
2

)
.

then there exists a selection of vertices uj ∈ Vj \ S for all j ∈ [T ] such that U = {uj : j ∈ T}

satisfies Ĝ[U ] ⊆ H[U ] and LĜ(v)[U ] ⊆ LH(v)[U ] for all v ∈ S. In particular, if H ⊆ Ĝ, then

Ĝ[U ] = H[U ] and LĜ(v)[U ] = LH(v)[U ] for all v ∈ S.

Proof of Lemma 5.2.12. Let H be an (n + 1)-vertex M-free 3-graph with δ(H) ≥
(

4
9 − ε

) (
n
2

)
.

Let v ∈ V (H) such thatH′ = H−v is G2
6 -colorable. We need to prove thatH is also G2

6 -colorable.

Let V = V (H), V ′ = V \ {v}, and

P = {V1, . . . , V6}.
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be the set of six parts in H′ such that there is no edge between V1V2V3, V1V2V6, V3V4V5, and

V4V5V6 (and every edge in H hits at most one vertex in Vj for every j ∈ [6]). Let yi = |Vi|/n

for i ∈ [6].

First we will prove several claims about sets in P. Since V1 is a representative for sets in

{V1, V2, V4, V5} and V3 is a representative for sets in {V3, V6}, we shall only prove the statements

for V1 and V3, and by symmetry, the statements hold for all sets in P.

Claim 5.2.14. We have ||Vi| − n/6| < 5ε1/2n for i ∈ [6].

Proof. First, it follows from the minimum degree assumption that |H′| ≥ (4/9− ε)
(
n
3

)
. On the

other hand, since H′ is G2
6 -colorable, we have

|H′| ≤ pG26 (y)n3. (5.1)

Therefore, we have

pG26 (y1, . . . , y6) ≥ (4/9− ε)
(
n

3

)
/n3 ≥ 2

27
− ε.
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Let a = (y3 + y6)/2, b = (y1 + y2)/2, c = (y4 + y5)/2, d = (b+ c)/2 and recall from the proof of

Lemma 5.2.5 that

pG26 (y1, . . . , y6) = y3y6(y1 + y2 + y4 + y5)

+ (y1 + y2)(y3 + y6)(y4 + y5) + y1y2(y4 + y5) + y4y5(y1 + y2)

≤ 2a2(b+ c) + 8abc+ 2bc(b+ c) ≤ 4a2d+ 8ad2 + 4d3 = 2 ((a+ d) · (a+ d) · 2d) .

Therefore,

(a+ d) · (a+ d) · 2d ≥ 1/27− ε/2, (5.2)

and

4d(a2 − y3y6) ≤ ε, 4d(d2 − bc) ≤ ε, 2c(b2 − y1y2) ≤ ε, 2b(c2 − y4y5) ≤ ε. (5.3)

Now Equation 5.2 and 2a+ 4d = 1 yield

ε/2 ≥ 1/27− (a+ d)2 · 2d = 1/27− (1 + 2a)2(1− 2a)/32 = (a− 1/6)2(a/4 + 5/24)

≥ (a− 1/6)2/8,
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whence |a − 1/6| ≤ 2ε1/2. By 2|a − 1/6| = 4|d − 1/6| this implies |d − 1/6| ≤ ε1/2. Since ε

is sufficiently small, it follows that a, d ≥ 1/8. So the first inequality in Equation 5.3 leads to

(y3 − y6) ≤ 8ε, whence |y3 − y6| ≤ 3ε1/2. By the triangle inequality we obtain

2|y3 − 1/6| ≤ |y3 − y6|+ |y3 + y6 − 1/3| ≤ 3ε1/2 + 2|a− 1/6| ≤ 7ε1/2,

which shows |y3 − 1/6| ≤ 4ε1/2. Similarly, |y6 − 1/6| ≤ 4ε1/2. Applying the same reasoning

to the other estimates in Equation 5.3 we obtain first |b − 1/6|, |c − 1/6| ≤ 3ε1/2 and then

|yi − 1/6| ≤ 5ε1/2 for every i ∈ {1, 2, 4, 5}.

Denote by G the blowup G2
6 [V1, . . . , V6] of G2

6 , and notice that H′ ⊂ G. For j ∈ [6] fix a

vertex aj ∈ Vj , let G̃j = LG(aj), Gj = G̃j [{a1, . . . , a6} \ {aj}], and notice that G̃j is a graph on

V (H) \ (Vj ∪ {v}) and is a blowup of Gj (see Figure 17).

Since H is G2
6 -colorable, LH′(w) ⊂ G̃j for all j ∈ [6] and w ∈ Vj . For every j ∈ [6] and every

w ∈ Vj let

M(w) =
{
w1w2 ∈ G̃j : w1w2 6∈ LH′(w)

}
,

and call members in M(w) missing edges of LH′(w).

Claim 5.2.15. We have |M(w)| ≤ 20ε1/2n2 for every w ∈ V ′.

Proof. We shall only prove the case w ∈ V1, since the arguments for other cases are similar.

Fix a vertex w ∈ V1. Let Ĝ1 be the blowup of G1 obtained by replacing each vertex in V (G1)
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a1 a2

a4a5

a6 a3

U1 U2

U4U5

U6 U3

(a) The graph G1 is the 5-vertex graph above, and

G̃1 is a blowup of G1.

a1 a2

a4a5

a6 a3

U1 U2

U4U5

U6 U3

(b) The graph G3 is the 5-vertex graph above, and

G̃3 is a blowup of G3.

Figure 17. Graphs G1 and G3.

with the set in P that contains it. Since H′ is G2
6 -colorable, LH′(w) ⊂ Ĝ1. On the other hand,

it follows from Claim 5.2.14 that

|M(w)| = |Ĝ1| − |LH′(w)| < 8
(

1/6 + 5ε1/2
)2
n2 − (4/9− ε)

(
n

2

)
< 20ε1/2n2.

By assumption and Claim 5.2.15, H and G satisfy the following statements, which will be

useful later when we applying Lemma 5.3.23.

(a) |H[A1, A2, A3]| ≥ |G[A1, A2, A3]| − εn3 for every triple {A1, A2, A3} ⊂ P, and

(b) |LH(u)[A1, A2]| ≥ |LG(u)[A1, A2]|−20ε1/2n2 for every u ∈ V ′ and every pair {A1, A2} ⊂ P

satisfying u 6∈ A1 ∪A2.
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Claim 5.2.16. Let j ∈ [6] and w ∈ Vj. Then |N(w) ∩ (V ′ \ Vj)| > |V ′ \ Uj | − 150ε1/2ñ.

Proof. We shall only prove the case that j = 1, since the arguments for other cases are similar.

Let w ∈ V1 and V ′′ = V ′ \ V1. Since δ(G1) ≥ 2 and G̃1 is a blowup of G1, it follows from

Claim 5.2.14 that

δ(G̃1) > 2
(

1/6− 5ε1/2
)
n ≥

(
1/3− 10ε1/2

)
n.

So it follows from Claim 5.2.15 that the number of vertices in V ′′ with degree 0 in LH′(w) is at

most

2|M(w)|
δ(G̃1)

<
40ε1/2n2(

1/3− 10ε1/2
)
n
< 150ε1/2n.

v
w1

w′1
w2

w6 w3

w4w5

U1 U2

U4U5

U6 U3

Figure 18. The 3-graph F = Hi[{w1, w2, . . . , w6}] ∪Hi[{w′1, w2, . . . , w6}] ∪ {vw1w
′
1} is a

member in M2 with core {w1, w
′
1, w2, . . . , w6}.
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Claim 5.2.17. We have L(v)[Vi] = ∅ for i ∈ [6].

Proof. Suppose to the contrary that there exists an edge w1w
′
1 ∈ L(v)[Vi] for some i ∈ [6]. We

shall only prove the case i = 1, since the arguments for other cases are similar. It follows from

Claim 5.2.16 that

|N(w1) ∩N(w′1) ∩ (V ′ \ V1)| > |V ′ \ V1| − 300ε1/2n. (5.4)

Applying Lemma 5.3.23 with S = {w1, w
′
1}, T = [2, 6], and η = 20ε1/2 we obtain wj ∈ Vj

for j ∈ [2, 6] (see Figure 18) such that the induced subgraphs of H on sets {w1, w2, . . . , w6} and

{w′1, w2, . . . , w6} are isomorphic to G2
6 . Let F = H[{w1, w2, . . . , w6}] ∪ H[{w′1, w2, . . . , w6}] ∪

{vw1w
′
1}. Then it is easy to see that F ∈M2 with core {w1, w

′
1, w2, . . . , w6} (see Figure 18), a

contradiction.

Claim 5.2.18. There is at most one set A ∈ P such that |N(v) ∩A| < n/48.

Proof. Let V ′j = N(v)∩Vj for j ∈ [6]. By Claim 5.2.17, L(v) is a 6-partite graph (not necessarily

complete) on V ′. Suppose to the contrary that there are exist two distinct i, j ∈ [6] such that

|V ′j | ≤ n/48. Then, by Claim 5.2.14,

|L(v)| ≤ 6
(

1/6 + 5ε1/2
)2
n2 + (n/48)2 + 8× n/48×

(
1/6 + 5ε1/2

)
n <

(
2/9− 10ε1/2

)
n2,

which contradicts the minimum degree assumption.
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v

w1

w′1

w6 w3

w4w5

U1 U2

U4U5

U6 U3

Figure 19. The 3-graph

F = Hi[{w1, w3, . . . , w6}] ∪Hi[{w′1, w3, . . . , w6}] ∪ {vw1w
′
1} ∪ {ej : j ∈ [3, 6]} is a member in

M2 with core {v, w1, w
′
1, w3, . . . , w6}. In particular, τ({w1w3w4, w

′
1w5w6}) > 1.

v

w1 w2

w6 w3

w4w5

U1 U2

U4U5

U6 U3

Figure 20. The 3-graph F = Hi[{w1, . . . , w6}] ∪ {ej : j ∈ [6]} is a member in M2 with core

{v, w1, . . . , w6}. In particular, τ({w1w3w4, w2w5w6}) > 1.
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Claim 5.2.19. There exists i ∈ [6] such that N(v) ∩ Vi = ∅.

Proof. Suppose to the contrary that N(v) ∩ Vi 6= ∅ for all i ∈ [6]. By Claim 5.2.18, there

are at least five sets A ∈ P with |A ∩ N(v)| ≥ n/48. We shall only prove the case that

|N(v) ∩ Vi| ≥ n/48 for i ∈ [6] \ {1}, since the arguments for other cases are similar.

Fix a vertex w1 ∈ N(v)∩ V1. Let V ′j = Vj ∩N(v) for i ∈ [2, 6]. By assumption, |V ′j | ≥ n/48

for j ∈ [2, 6]. So applying Lemma 5.3.23 with T = {w1}, S = [2, 6], and η = 20ε1/2 we obtain

wj ∈ V ′j for j ∈ [2, 6] (see Figure 20) such that the induced subgraph of H on {w1, . . . , w6}

is isomorphic to G2
6 . For j ∈ [6] let ej ∈ H be an edge containing v and wj . Define F =

H[{w1, . . . , w6}] ∪ {ej : j ∈ [6]}. Then it is easy to see that F is a member in M2 with core

{v, w1, . . . , w6} (see Figure 20), a contradiction.

Our next step is to show that H is G2
6 -colorable with the sets of parts P̃, where P̃ is obtained

from P by replacing A with A ∪ {v} and the set A is guaranteed by Claim 5.2.19. We shall

only prove the case A = V1, since the arguments for other cases are similar.

Let

Bv =
{
ww′ ∈ L(v) : ww′ 6∈ G̃1

}
, and Mv =

{
ww′ ∈ G̃1 : ww′ 6∈ L(v)

}
.

Members in Bv are called bad edges of L(v) and members in Mv are called missing edges of

L(v).

Claim 5.2.20. We have |Bv| < 300ε1/12n2.
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v

w6

w2

w3

w4w5

w1

U1 U2

U4U5

U6 U3

Figure 21. The 3-graph F = Hi[{w1, . . . , w6}] ∪ {ej : j ∈ {4, 5, 6}} ∪ {vw2w3} is a member in

M3 with core {v, w1, . . . , w5}.

Proof. Suppose to the contrary that |Bv| ≥ 300ε1/12ñ2. Notice that every edge in Bv must have

one vertex in V2 and the other vertex in V3 ∪ V6. By symmetry and the Pigeonhole principle,

we may assume that at least |Bv|/2 edges in Bv have one vertex in V2 and the other vertex in

V3. Then Claim 5.2.14 and an easy averaging argument show that there exists a vertex w2 ∈ V2

such that

|NBv(w2) ∩ V3| ≥
|Bv|/2
|V2|

>
300ε1/12n2/2

n/5
> 600ε1/12n.

Let V ′3 = NBv(w2) ∩ V3, and V ′j = N(v) ∩ Vj for j ∈ {4, 5, 6}. Since |V ′3 | ≥ 600ε1/12n and

|V ′j | ≥ n/13 for j ∈ {4, 5, 6}, applying Lemma 5.3.23 with T = {w2}, S = {1, 3, 4, 5, 6}, and

η = 20ε1/2 we obtain w1 ∈ V1 and wj ∈ V ′j for j ∈ {3, 4, 5, 6} (see Figure 21) such that the

induced subgraph of H on {w1, . . . , w6} is a copy of G2
6 . For j ∈ {4, 5, 6} let ej ∈ H be an edge

containing v and wj . Let F = H[{w1, . . . , w6}]∪ {ej : j ∈ {4, 5, 6}} ∪ {vw2w3}. It is easy to see
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that F is a member in K3
6 with core {v, w2, . . . , w6} (see Figure 21). So, by assumption, either

F ⊂ G1
m or F ⊂ G2

m for any integer m. It is easy to see that the former case cannot hold since

the induced subgraph of F on the set {w1, . . . , w6} is a copy of G2
6 and G2

6 6⊂ G1
m for any integer

m. So, F ⊂ G2
m for some integer m. In other words, there exists a map ψ : V (F )→ V (G2

6) such

that ψ(e) ∈ G2
6 for all e ∈ F . Notice that both {w1, . . . , w6} and {v, w2, . . . , w6} are 2-covered

in F , so the restrictions of ψ on {w1, . . . , w6} and {v, w2, . . . , w6} are both injective (similar to

the proof of Lemma 5.2.2), and moreover, ψ(v) = ψ(w1). Let w = ψ(v) = ψ(w1). Notice that

the induced subgraph of LF (w1) on {w2, . . . , w3} has size 8 and w2w3 ∈ LF (v) \LF (w1). Since

ψ preserves edges, the degree of w in G2
6 should be at least 8 + 1 = 9. However, this contradicts

the fact that the maximum degree of G2
6 is 8.

A consequence of Claim 5.2.20 is that the size of Mv satisfies

|Mv| = |G̃1 \ L(v)| = |G̃1| − |G̃1 ∩ L(v)|

= |G̃1| − (|L(v)| − |Bv|)

< 8
(

1/6 + 5ε1/2
)2
n2 −

(
(2/9− ε)n2 − |Bv|

)
< 400ε1/12n2.

Claim 5.2.21. We have Bv = ∅. In other words, L(v) ⊂ G̃1.

Proof. Suppose to the contrary that there exists an edge u2u3 ∈ Bv and by symmetry we may

assume that u2 ∈ V2 and u3 ∈ V3. For j ∈ {4, 5, 6} let V ′j = Vj ∩ N(v) ∩ N(u1) ∩ N(u2) and

notice that due to |Mv| ≤ 400ε1/12n2 and Claim 5.2.14 we have |V ′j | ≥ |Vj |/2 > n/20. Applying
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Figure 22. The 3-graph F = Hi[{v, u2, u3, w1, . . . , w6}] ∪ {vu2u3} ∪ {eu3w4} is a member in M3

with core {v, u2, u3, w4, w5, w6}.

Lemma 5.3.23 with T = {u2, u3}, S = [6], and η = 400ε1/36 we obtain wj ∈ V ′j for j ∈ [6]

(see Figure 22) such that

(a) H[{w1, . . . , w6}] ∼= G2
6 ,

(b) L(v)[{w2, . . . , w6}] = LĜ(w1)[{w2, . . . , w6}],

(c) L(u2)[{w1, w3, . . . , w6}] = LĜ(u2)[{w1, w3, . . . , w6}], and

(d) L(u3)[{w1, w2, w4, w5, w6}] = LĜ(u3)[{w1, w2, w4, w5, w6}].

Let eu3w4 ∈ H be an edge containing u3 and w4. Let F = H[{v, u2, u3, w1, . . . , w6}]∪{vu2u3}∪

{eu3w4}. Then it is easy to see that F is a member in K3
6 with core {v, u2, u3, w4, w5, w6}

(see Figure 22). Similar to the proof of Claim 5.2.20, F ⊂ G2
m for some integer m. In other

words, there exists a map ψ : V (F ) → V (G2
6) such that ψ(e) ∈ G2

6 for all e ∈ F . Notice that
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both {w1, . . . , w6} and {v, u2, u3, w4, w5, w6} are 2-covered in F , so the restrictions of ψ on sets

{w1, . . . , w6} and {v, u2, u3, w4, w5, w6} are both injective (similar to the proof of Lemma 5.2.2),

and moreover, ψ(v) = ψ(w1) (due to (b), v is adjacent to all vertices in {w2, . . . , w6}, so ψ(v)

is distinct from {ψ(w2), . . . , ψ(w6)}), ψ(u2) = ψ(w2) (due to (c) and a similar reason), and

ψ(u3) = ψ(w3) (due to (d) and a similar reason). Let w = ψ(v) = ψ(w1). Notice that the

induced subgraph of LF (w1) on {w2, . . . , w6} has size 8 and u2u3 ∈ LF (v) \ LF (w1). Since ψ

preserves edges, the degree of w in G2
6 should be at least 8 + 1 = 9. However, this contradicts

the fact that the maximum degree of G2
6 is 8.

Define

V̂j =


V1 ∪ {v}, if j = 1,

Vj , otherwise.

By Claim 5.2.21, L(v) ⊂ G̃1. Therefore, H is G2
6 -colorable with set of parts {V̂1, . . . , V̂6}. This

completes the proof of Lemma 5.2.12.

5.2.4 Proof of Theorem 5.1.8

Theorem 5.1.7 gives the following lemma.

Lemma 5.2.22. Let ε > 0 be sufficiently small and n (related to ε) be sufficiently large. Suppose

that H is an M-free 3-graph with n vertices and at least 2n3/27− εn3 edges. Then,

either

∣∣∣∣|∂H| − 5

12
n2

∣∣∣∣ < 100ε1/4n2 or

∣∣∣∣|∂H| − 4

9
n2

∣∣∣∣ < 100ε1/4n2.
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Proof. Let ε > 0 be sufficiently small and n (related to ε) be sufficiently large. Let H be an

M-free 3-graph with n vertices and at least 2n3/27− εn3 edges. By Theorem 5.1.7, there exists

W ⊂ V (H) with |W | > n − 3ε1/2n such that δ(H[W ]) ≥ 2n2/9 − 20ε1/2n2 and H[W ] is either

semibipartite or G2
6 -colorable. Let Z = V (H) \W , ñ = |W |, and H̃ = H[W ]. Then,

|H̃| = 1

3

∑
w∈W

dH̃(w) >
1

3

(
n− 3ε1/2n

)(2

9
n2 − 20ε1/2n2

)
>

2

27
n3 − 20ε1/2n3. (5.5)

Suppose that H[W ] is semibipartite and let L and R denote the two parts of H[W ] such

that every E ∈ H[W ] satisfies |A ∩ E| = 1 and |B ∩ E| = 2. Note from Claim 5.2.9 that

|L| = |W |
3
± 4ε1/4|W | = n

3
± 8ε1/4n (5.6)

and

|L| = 2|W |
3
± 4ε1/4|W | = 2n

3
± 8ε1/4n. (5.7)

First we prove the lower bound for |∂H|. Let

(∂H̃)[R] =
{
uv ∈ ∂H̃ : {u, v} ⊂ R

}
,

and

(∂H̃)[L,R] =
{
uv ∈ ∂H̃ : u ∈ L, v ∈ R

}
.
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Since H̃ is semibipartite,

|L||(∂H̃)[R]| ≥
∑
v∈L

d
H̃

(v) = |H̃|

and

|R||(∂H̃)[L,R]| ≥
∑
u∈R

d
H̃

(u) = 2|H̃|.

Together with Equation 5.5, Equation 5.6, and Equation 5.7, we obtain

|∂H̃| = |(∂H̃)[R]|+ |(∂H̃)[L,R]| ≥ |H̃|
|L|

+
2|H̃|
|R|

>
2n3/27− 20ε1/2n3

(1/3 + 8ε1/4)n
+

2(2n3/27− 20ε1/2n3)

(2/3 + 8ε1/4)n

>
4

9
n2 − 100ε1/2n2.

Therefore, |∂H| ≥ |∂H̃| > 4n2/9− 100ε1/2n2.

Next, we prove the upper bound for |∂H|. Let v ∈ Z and suppose that there exists an edge

w1w2 ∈ LH(v)[L]. Since LH[W ](w1) and LH[W ](w2) are graphs onR and |LH[W ](w1)|, |LH[W ](w2)| ≥

2n2/9− 20ε1/2n2, the edge density of LH[W ](w1)∩LH[W ](w2) is close to 1. So, by Turán’s the-

orem, there exists a copy of K5 in LH[W ](w1)∩LH[W ](w2). We may assume that the vertex set

of this K5 is {w3, w4, w5, w6, w7} (see Figure 23). Let F = H[{w1, . . . , w7}] ∪ {uw1w2}. Then
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v

w1

w2

w3

w5w6

w4w7

L

R

Figure 23. The 3-graph F = H[{w1, . . . , w7}] ∪ {uw1w2} is a member in M2 with core

{w1, . . . , w7}. In particular, τ{w1w3w4, w2w5w6} > 1.

it is easy to see that F is a member in M2 with core {w1, . . . , w7}, a contradiction. Therefore,

LH(v)[L] = ∅ for all v ∈ Z, and it follows that

|∂H| ≤
(
|W |

2

)
−
(
|L|
2

)
+ |Z||W |+

(
|Z|
2

)
≤
(
n

2

)
−
(
|L|
2

)
<

1

2
n2 − 1

2

(
1

3
− 8ε1/4

)
n2 <

4

9
n2 + 100ε1/4n2.

Therefore, if H̃ is semibipartite, then

4

9
n2 − 100ε1/2n2 < |∂H| < 4

9
n2 + 100ε1/4n2.
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Suppose that H̃ is G2
6 -colorable and let P := {A1, A2, A3, A4, B1, B2} be the set of six parts

of H̃ such that there is no edge between A1A2B1, A1A2B2, A3A4B1, and A3A4B2. Notice from

Claim 5.2.14 that

|S| = |W |
6
± 10ε1/2|W | = n

6
± 10ε1/4n, for all S ∈ P. (5.8)

First, we prove the lower bound for |∂H|. Since H̃ is G2
6 -colorable, ∂H̃ is a 6-partite graph

the set of six parts P. Let G denote the blow up of G2
6 with the set of six parts P such that there

is no edge between A1A2B1, A1A2B2, A3A4B1, and A3A4B2. Notice that for every e ∈ ∂G \∂H̃

there are at least 2(|W |/6− 10ε1/2|W |) sets E ∈ G \ H̃ such that e ∈ E. Therefore,

|∂G \ ∂H̃| ≤ 3|G \ H̃|
2(|W |/6− 10ε1/2|W |)

Equation 5.5, Equation 5.8
<

3× 20ε1/2n2

2(n/6− 10ε1/4n)
< 400ε1/2n2,

and it follows that

|∂H̃| > |∂G| − 400ε1/2n2
Equation 5.8

>

(
6

2

)(n
6
− 10ε1/4n

)2
− 400ε1/2n2 >

5

12
n2 − 100ε1/4n2

Therefore, |∂H| ≥ |∂H̃| > 5n2/12− 100ε1/4n2.
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Next, we prove the upper bound for |∂H|. Let v ∈ Z and suppose that LH(v)[S] 6= ∅

for some S ∈ P. Then Claim 5.2.171 implies that H contains a copy of a 3-graph in M2, a

contradiction. Therefore, LH(v)[S] = ∅ for all S ∈ P, and it follows that

|∂H| ≤ 5

12
|W |2 + |Z||W |+

(
|Z|
2

)
<

5

12
n2 + 100ε1/4n2.

Therefore, if H̃ is G2-colorable, then

5

12
n2 − 100ε1/4n2 < |∂H| < 5

12
n2 + 100ε1/4n2.

Now we are ready to prove Theorem 5.1.8.

Proof of Theorem 5.1.8. Let

Sn = {A ⊂ [n] : 1 ∈ A} .

Since Sn is M-free and |∂Sn| =
(
n
2

)
, it follows that projΩ(M) = [0, 1]. On the other hand, it

follows from Theorem 5.1.4 that g(M, x) ≤ 4/9 for all x ∈ [0, 1] and g(M, 5/6) = g(M, 8/9) =

4/9.

1 Even though Claim 5.2.17 was proved only for vertices in W , in fact, its proof does not require v to have a large

degree. So it also holds for vertices in Z.



205

Now suppose that (Hk)∞k=1 is a sequence of M-free 3-graphs with limk→∞ v(Hk) = ∞,

limk→∞ d(∂Hk) = x0, and limk→∞ d(Hk) = 4/9. For any sufficiently small ε > 0 and sufficiently

n0, there exists k0 such that v(Hk) ≥ n0 and |Hk| > 2(v(Hk))3/27 − ε(v(Hk))3 for all k ≥ k0.

Therefore, by Lemma 5.2.22, for every k ≥ k0 either

8

9
− 200ε1/4 <

|∂Hk|(
v(Hk)

2

) < 8

9
+ 200ε1/4

or

5

6
− 200ε1/4 <

|∂Hk|(
v(Hk)

2

) < 5

6
+ 200ε1/4.

Letting ε→ 0 we obtain either x0 = 8/9 or x0 = 5/6, and this completes the proof.
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5.3 Proof for t-stable families

In this section we prove Theorems 5.1.9 and 5.1.10.

5.3.1 Preliminaries

In this section we present some definitions related to the Lagrangian of a hypergraph,

introduced by Frankl and Rödl in [105], and prove a result (Proposition 5.4.2 below) about

certain almost complete triple systems.

For a pair of vertices u, v ∈ V (G) the neighborhood of {u, v} is

NG(u, v) = {w ∈ V (G) \ {u, v} : ∃A ∈ G such that {u, v, w} ⊆ A} ,

and dG(u, v) = |NH(u, v)| is called the codegree of {u, v}. Denote by δ2(G),∆2(G) the minimum

and maximum codegree of G, respectively.

For a hypergraph G the maximum number of edges in a blow-up of G is related to λ(G) (e.g.

see Frankl and Füredi [102] or Section 3 in Keevash’s survey [135]).

Lemma 5.3.1 ([102; 135]). Let r ≥ 2 and let G, H be two r-graphs. If H is a blow up of G,

then |H| ≤ λ(G)v(H)r.

Given a 3-graph G, by plugging (1/n, . . . , 1/n) into LG one immediately obtains the lower

bound λ(LG) ≥ |G|/n3. It is well known that for cliques H = K3
n this holds with equality and,

moreover, that (1/n, . . . , 1/n) is the only point in the simplex ∆n−1, where LH attains this

maximum value.
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The main result of this section, Proposition 5.4.2 below, exhibits a class of almost complete 3-

graphs having the same properties. This will allow us later to construct for every given positive

integer t a family {G1, . . . ,Gt} of 3-graphs and a rational number λt close to 1/6 such that

λ(Gi) = |Gi|/v(Gi)3 = λt holds for all i ∈ [t]. The extremal configurations for our hypergraph

Turán problem are then going to be balanced blow-ups of G1, . . . ,Gt. As we can accomplish

v(G1) < · · · < v(Gt), this is relevant to Theorem 5.1.10.

Let us observe that every hypergraph G satisfying λ(G) = |G|/v(G)3 needs to be regular in

the sense that all vertices have the same degree. In the converse direction, regular hypergraphs

can still have much larger Lagrangians than |G|/v(G)3. For instance, the Lagrangian of the Fano

plane is 1/27 but not 1/49. To avoid such situations we utilize a design theoretic construction.

For the purposes of this article, by an (n, k)-design we shall mean a k-graph D on n vertices

such that every pair of vertices is covered by a unique edge. With every such design D we

associate the 3-graph

H(D) =
⋃
E∈D

(
E

3

)
.

on V (D). Note that

|H(D)| =
(
k

3

)(n
2

)(
k
2

) =
k − 2

6
n(n− 1).

It will turn out that for n ≥ 18k every 3-graph of the form G = K3
n \ H(D), where D is

an (n, k)-design on [n], has the property λ(G) = |G|/v(G)3. In order to increase our control
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over the resulting value of λ(G) Proposition 5.4.2 allows the extra flexibility to subtract a very

sparse regular 3-graph from G. Moreover, for reasons related to stability we state slightly more

than just the actual value of the Lagrangian.

Proposition 5.3.2. Suppose that n ≥ 18k + 37s3, D is an (n, k)-design on [n], and S is an

s-regular 3-graph on [n]. If S ∩H(D) = ∅ and G = K3
n \ (H(D) ∪ S), then

LG(x1, . . . , xn) +
1

9

n∑
i=1

(
xi −

1

n

)2

≤ |G|
n3

=
1

6

(
1− k + 1

n
+
k − 2s

n2

)
(5.9)

holds for all (x1, . . . , xn) ∈ ∆n−1 and, consequently,

λ(G) =
1

6

(
1− k + 1

n
+
k − 2s

n2

)
. (5.10)

We start with a simple observation that will come in handily later.

Fact 5.3.3. Let G be a 3-graph with vertex set [n] and let α ≥ 0 be a real number. If the real

numbers α1, . . . , αn ∈ [−1, α] sum up to zero, then

LG(α1, . . . , αn) ≤ (αn)3.

Proof. Define P = {i ∈ [n] : αi > 0} to be the set of vertices of G with positive weight. Let

us decompose LG(α1, . . . , αn) = S0 + S1 + S2 + S3 such that for m ∈ {0, 1, 2, 3} the sum Sm

consists of all terms αiαjαk contributing to LG and satisfying |P ∩ {i, j, k}| = m.
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As the sums S0 and S2 possess no positive terms, we have S0, S2 ≤ 0. Moreover, S3 has no

more than
(|P |

3

)
≤ n3/6 summands each of which amounts to at most α3, wherefore S3 is at

most (αn)3/6. Thus to conclude the argument it is more than enough to show S1 ≤ (αn)3/2.

Writing W =
∑

i∈P αi we have
∑

i∈[n]\P αi = −W and

S1 ≤
∑
i∈P

αi ·
∑

jk∈([n]\P2 )

αjαk ≤W · (W 2/2) = W 3/2,

which by |W | ≤ α|P | ≤ αn completes the proof.

Proof of Proposition 5.4.2. Since the left side of Equation 5.28 is continuous in (x1, . . . , xn)

and ∆n−1 is compact, there exists a point ξ = (ξ1, . . . , ξn) ∈ ∆n−1 such that

ω = LG(ξ1, . . . , ξn) +
1

9

n∑
i=1

(
ξi −

1

n

)2

− 1

6

(
1− k + 1

n
+
k − 2s

n2

)
(5.11)

is maximum. Assume for the sake of contradiction that ω > 0.

Claim 5.3.4. There exists an index i(?) ∈ [n] such that ξi(?) >
1
n + 9s

n2 .

Proof. Define α1, . . . , αn ∈ [−1, n− 1] by ξi = (1 + αi)/n for every i ∈ [n] and observe that

ωn3 = LG(1 + α1, . . . , 1 + αn) +
n

9

n∑
i=1

α2
i − |G|

=

n∑
i=1

dG(i)αi +
∑

1≤i<j≤n
dG(i, j)αiαj + LG(α1, . . . , αn) +

n

9

n∑
i=1

α2
i .
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Since all vertices of G have the same degree and
∑n

i=1 αi = n
(∑n

i=1 ξi − 1
)

= 0, the first sum

on the right side vanishes. Moreover, all pairs of vertices have codegree n − k in K3
n \ H(D)

and thus we obtain

ωn3 =

(
n

9
− n− k

2

) n∑
i=1

α2
i −

∑
1≤i<j≤n

dS(i, j)αiαj + LG(α1, . . . , αn) . (5.12)

First case: We have ξ1, . . . , ξn > 0.

Collecting the quadratic and cubic terms in Equation 5.12 separately we put

Q =

(
n

9
− n− k

2

) n∑
i=1

α2
i −

∑
1≤i<j≤n

dS(i, j)αiαj and K = LG(α1, . . . , αn),

so that

ωn3 = Q+K.

Now for every real number C sufficiently close to 1 the point (ξ′1, . . . , ξ
′
n) defined by ξ′i =

(1 + Cαi)/n belongs to ∆n−1 and the maximal choice of ω reveals

LG(ξ′1, . . . , ξ
′
n) +

1

9

n∑
i=1

(
ξ′i −

1

n

)2

− 1

6

(
1− k + 1

n
+
k − 2s

n2

)
≤ ω.
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Multiplying by n3 and repeating the above calculation we obtain QC2 + KC3 ≤ Q + K and

thus

0 ≤ (1− C)[(1 + C)Q+ (1 + C + C2)K] (5.13)

whenever |C − 1| is sufficiently small. Letting C tend to 1 from above and below we obtain

2Q+ 3K = 0. Substituting this back into Equation 5.13 we learn

0 ≤ (1− C)[(C − 1)Q+ (C2 + C − 2)K] = −(1− C)2[Q+ (C + 2)K].

Thus Q + 3K ≤ (1 − C)K holds whenever |C − 1| is sufficiently small, which is only possible

if Q + 3K ≤ 0. Together with Q + K = ωn3 > 0 this yields K < 0 and ωn3 < Q − K =

(−1)2Q+(−1)3Q. So the maximality of ω tells us that for C = −1 we have (ξ′1, . . . , ξ
′
n) 6∈ ∆n−1.

In other words, there is some i(?) ∈ [n] such that

ξi(?) ≥
2

n
>

1

n
+

9s

n3
,

as desired.

Second case: There exists some j(?) ∈ [n] satisfying ξj(?) = 0.

Now αj(?) = −1 and, consequently,

n∑
i=1

α2
i ≥ 1. (5.14)
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Next we observe that the hypothesis that S be s-regular yields

−
∑

1≤i<j≤n
dS(i, j)αiαj ≤

∑
1≤i<j≤n

dS(i, j)
α2
i + α2

j

2
= s

n∑
i=1

α2
i .

Combined with Equation 5.12 and the positivity of ω this shows

(
n− k

2
− n

9
− s
) n∑
i=1

α2
i < LG(α1, . . . , αn). (5.15)

Due to n ≥ 18k + 37s3 we have

n− k
2
− n

9
− s >

(
1

2
− 1

36
− 1

9
− 1

36

)
n =

n

3
> (9s)3

and together with Equation 5.14, Equation 5.15 this establishes

(9s)3 < LG(α1, . . . , αn).

In view of Fact 5.3.3 we deduce that αi(?) > 9s/n holds for some i(?) ∈ [n] and now

ξi(?) =
1 + αi(?)

n
>

1

n
+

9s

n2

follows. Thereby Claim 5.3.4 is proved.
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Now for every i ∈ [n] we set

Di =
∂LG(x1, . . . , xn)

∂xi

∣∣∣∣
(ξ1,...,ξn)

=
∑
jk∈Li

ξjξk,

where Li denotes the link graph of i in G. Owing to the maximality of ω in Equation 5.11 the

Lagrange multiplier method leads to the existence of a real number M such that

Di +
2

9

(
ξi −

1

n

)
= M

holds for every vertex i ∈ [n] with ξi > 0. Notice that

M = M

n∑
j=1

ξj =

n∑
j=1

ξj

(
Dj +

2

9

(
ξj −

1

n

))
= 3LG(ξ1, . . . , ξn) +

2

9

n∑
j=1

(
ξj −

1

n

)2

Equation 5.11
>

1

2

(
1− k + 1

n
+
k − 2s

n2

)
− 1

9

n∑
j=1

(
ξj −

1

n

)2

.

Altogether, this proves

Di +
2

9

(
ξi −

1

n

)
+

1

9

n∑
j=1

(
ξj −

1

n

)2

>
1

2

(
1− k + 1

n
+
k − 2s

n2

)

for every vertex i ∈ [n] satisfying ξi > 0.
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By our design theoretic construction, the link in K3
n \ H(D) of every vertex i ∈ [n] is a

q-partite Turán graph with vertex classes of size k− 1, where q = (n− 1)/(k− 1) is an integer.

Consequently, there exist real numbers β1, . . . , βq such that ξi + (β1 + · · ·+ βq) = 1 and

Di ≤
∑

1≤v<w≤q
βvβw ≤

q − 1

2q
(β1 + · · ·+ βq)

2 =
n− k

2(n− 1)
(1− ξi)2.

Summarizing, we have

2

9

(
ξi −

1

n

)
+

1

9

n∑
j=1

(
ξj −

1

n

)2

>
n− k

2(n− 1)

((
1− 1

n

)2

− (1− ξi)2

)
− s

n2
(5.16)

for every vertex of positive weight. For the rest of the argument we fix a vertex i(?) ∈ [n] such

that ξi(?) is maximal. Let us add the trivial estimate

1

9

n∑
j=1

ξj(ξi(?) − ξj) ≥ 0

to the case i = i(?) of Equation 5.16. Because of

n∑
j=1

(
ξj −

1

n

)2

+

n∑
j=1

ξj(ξi(?) − ξj) =

n∑
j=1

ξj

(
ξi(?) −

1

n

)
− 1

n

n∑
j=1

(
ξj −

1

n

)
(5.17)

= ξi(?) −
1

n
(5.18)
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this yields

1

3

(
ξi(?) −

1

n

)
>

n− k
2(n− 1)

(
ξi(?) −

1

n

)(
2− 1

n
− ξi(?)

)
− s

n2

≥ n− k
2n

(
ξi(?) −

1

n

)
− s

n2
≥ 4

9

(
ξi(?) −

1

n

)
− s

n2
,

whence

ξi(?) <
1

n
+

9s

n2
.

Owing to the maximal choice of ξi(?) this contradicts Claim 5.3.4.

5.3.2 Constructions and Turán numbers

Given a positive integer t we define in this section the triple systems G1, . . . ,Gt and the

forbidden family Mt appearing in Theorem 5.1.9. For every i ∈ [t] there will be three integers

ni, ki, si such that Gi = K3
ni \ (H(Di) ∪ Si) holds for some (ni, ki)-design Di on [ni] and some

si-regular triple system Si on [ni] that is disjoint to H(Di). As we shall have ni � ki, si,

Proposition 5.4.2 will imply

λ(Gi) =
1

6

(
1− ki + 1

ni
+
ki − 2si
n2
i

)
.

Part of our goal is that balanced blow-ups of G1, . . . ,Gt should be extremal Mt-free triple

systems and for this reason we need to ensure λ(Gi) = · · · = λ(Gt). We shall achieve this by

letting ki = 2si for i ∈ [t], and by guaranteeing
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k1 + 1

n1
= · · · = kt + 1

nt
. (5.19)

The details of this construction are given in Subsection 5.3.2.1 and the exact Turán numbers

of our families Mt are determined in Subsection 5.3.2.2.

5.3.2.1 The extremal configurations and forbidden family

First, we need the following theorem about the existence of designs due to Wilson [244; 245;

247].

Theorem 5.3.5 (Wilson [244; 245; 247]). For every integer k ≥ 2 there exists a threshold n0(k)

such that for every integer n ≥ n0(k) satisfying the divisibility conditions (k − 1) | (n− 1) and

(k − 1)k | (n− 1)n there exists an (n, k)-design.

Our next lemma deals with the arithmetic properties the numbers k1, . . . , kt and n1, . . . , nt

entering the construction of G1, . . . ,Gt need to satisfy. Apart from Equation 5.19 and the

divisibility conditions in Theorem 5.3.5 we will require that n1, . . . , nt are divisible by 3 so that

(ki/2)-regular triple systems on ni vertices exist. Thus the case q = 3 of the following lemma

is exactly what we need.

Lemma 5.3.6. Given positive integers t and q there exist t even integers 3 < k1 < · · · < kt such

that for every constant C > 0 there exist t integers n1 < · · · < nt with the following properties.

(a) We have q | ni, (ki − 1) | (ni − 1), and ki(ki − 1) | ni(ni − 1) for all i ∈ [t].
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(b) Moreover,

Q =
n1

k1 + 1
= · · · = nt

kt + 1

is an integer with Q ≥ C.

Proof. Starting with an arbitrary positive multiple s1 of q we recursively define integers 1 ≤

s1 < · · · < st by setting si+1 =
∏
j≤i sj(2sj − 1) + 1 for every i ∈ [t − 1]. Now whenever

1 ≤ i < j ≤ t we have sj ≡ 1 (mod si(2si − 1)) and, consequently,

sj(2sj − 1) ≡ 1 (mod si(2si − 1)).

In particular, the numbers

s1(2s1 − 1), . . . , st(2st − 1)

are pairwise coprime and by the Chinese remainder theorem there exists an even integer Q ≥ C

such that Q/2 ≡ s2
i (mod si(2si − 1)) holds for all i ∈ [t]. Multiplying these congruences by 2

and setting ki = 2si we obtain

Q ≡ k2
i /2 (mod ki(ki − 1)). (5.20)
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Now it is plain that the numbers ni = Q(ki + 1) satisfy (b). Moreover, the case i = 1 of Equa-

tion 5.20 yields q | k1 | Q and, therefore, n1, . . . , nt are divisible by q. Finally, multiplying E-

quation 5.20 by ki + 1 we learn

ni ≡ ki(ki + 1)(ki/2) ≡ 2ki(ki/2) ≡ k2
i ≡ ki (mod ki(ki − 1)),

for which reason ki | ni and (ki − 1) | (ni − 1). So altogether (a) holds as well.

Given two r-graphsH1 andH2 with the same number of vertices a packing ofH1 andH2 is a

bijection φ : V (H1)→ V (H2) such that φ(E) 6∈ H2 for all E ∈ H1. In order to proceed with our

construction of the triple systems G1, . . . ,Gt we need to argue that, under natural assumptions,

if Di denotes an (ni, ki)-design, then there is an si-regular 3-graph Si ⊆ K3
n \ H(Di), where

si = ki/2. Provided that 3 | ni and si ≤
(
n−1

2

)
the existence of some si-regular 3-graph Si ⊆ K3

n

is a well known fact that follows, e.g., from Baranyai’s factorisation theorem [14]. For making Si

and H(Di) disjoint we use a packing argument based on the following result of Lu and Székely.

Theorem 5.3.7 (Lu–Székely [179]). Let H1 and H2 be two r-graphs on n vertices. If

∆(H1)|H2|+ ∆(H2)|H1| <
1

er

(
n

r

)
,

then there is a packing of H1 and H2.

In fact, we only require the following consequence.
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Corollary 5.3.8. Suppose 3 | n and that D is an (n, k)-design on [n]. If s < n−2
6e(k−2) , then

there exists an s-regular 3-graph S on [n] such that S ∩H(D) = ∅.

Proof. By 3 | n and s ≤
(
n−1

2

)
there is an s-regular 3-graph S ′ on n vertices. Since

∆(S ′)|H(D)|+ ∆(H(D))|S ′| = s
k − 2

6
n(n− 1) +

k − 2

2
(n− 1)

sn

3

= s
k − 2

3
n(n− 1) <

n− 2

6e(k − 2)

k − 2

3
n(n− 1)

=
1

3e

(
n

3

)
,

Theorem 9.1.15 yields a packing φ : V (S ′) → [n] of S ′ and H(D). It is clear that S = φ(S ′)

satisfies the requirements of Corollary 5.3.8.

Now we are ready to present the definition of G1, . . . ,Gt.

Definition 5.3.9. Given a positive integer t perform the following steps.

• Apply Lemma 5.3.6 with q = 3, thus getting some even integers 3 < k1 < · · · < kt.

• Take an integer C ≥ max{n0(k1), . . . , n0(kt), 2k
3
t , 3

8}, where the thresholds n0(ki) are

given by Theorem 5.3.5.

• Now Lemma 5.3.6 applied to C and k1, . . . , kt yields integers C < n1 < · · · < nk such

that, in particular,

Q =
n1

k1 + 1
= · · · = nt

kt + 1

is an integer with Q ≥ C.
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Now, for every i ∈ [t]

• let Di be an (ni, ki)-design on [ni] (as obtained by Theorem 5.3.5)

• let Si be a (ki/2)-regular 3-graph on [ni] such that Si ∩H(Di) = ∅ (as obtained by Corol-

lary 5.3.8).

• and, finally, define

Gi = K3
ni \ (H(Di) ∪ Si) .

By Proposition 5.4.2 we have

λ(Gi) =
1

6

(
1− ki + 1

ni
+
ki − 2ki/2

n2
i

)
=

1

6

(
1− 1

Q

)
.

for every i ∈ [t], so some rational λt satisfies

λt = λ(G1) = · · · = λ(Gt) ∈ [5/32, 1/6). (5.21)

In the remainder of this subsection we introduce the family Mt. For an r-graph H and a

set S ⊆ V (H) we say that S is 2-covered in H if for every pair of vertices in S there is an edge

in H containing it. If this holds for S = V (H) then H itself is said to be 2-covered.

For all integers ` > r ≥ 2 we let Kr` denote the family of r-graphs F with at most
(
`
2

)
edges that contain a 2-covered set S of ` vertices called a core of F . The family Kr` was first

introduced by the second author [191] in order to extend Turán’s theorem to hypergraphs. It
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also plays a key rôle in in the construction of the family M with two extremal configurations

in [169]. In the present work, we also need the larger family K̂r` defined to consist of all r-graphs

F with at most
(
`
r

)
edges that contain a 2-covered set S of ` vertices, which is again called a

core of F .

Let us recall that the transversal number of a hypergraph H is the nonnegative integer

τ(H) = min {|S| : S ⊆ V (H) and S ∩ E 6= ∅ for all E ∈ H} .

Note that if H is empty, then we can take S = ∅, whence τ(H) = 0 holds in this case. After

these preparations, the family Mt is defined as follows.

Definition 5.3.10. For every positive integer t the family Mt consists of all 3-graphs F ∈⋃
`≤nt K̂

3
` which do not occur as a subgraph in any blow-up of G1, . . . ,Gt and which have a core

S such that τ(F [S]) ≥ 2.

We conclude this subsection with a simple sufficient condition for 3-graphs F ∈ K3
nt+1

guaranteeing that they are in Mt (see Lemma 5.3.13 below). For this purpose we require

the following observation analysing the extent to which τ(H) ≥ 2 is a “local” property of a

hypergraph H.

Fact 5.3.11. If r ≥ 2 and H denotes an r-graph with τ(H) ≥ 2, then there is a subgraph

H′ ⊆ H with at most r + 1 edges satisfying τ(H′) ≥ 2.
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Proof. Pick two distinct edges E′, E′′ ∈ H and write E′ ∩ E′′ = {v1, . . . , vm}, where 0 ≤ m ≤

r − 1. For every i ∈ [m] the assumption that {vi} fails to cover H yields an edge Ei ∈ H such

that vi 6∈ Ei. Now H′ = {E′, E′′, E1, . . . , Em} has the desired properties.

Notice that the example H = Kr
r+1 shows that the bound |H′| ≤ r + 1 is optimal.

Lemma 5.3.12. Suppose that F is a 3-graph and that S ⊆ V (F ) is a 2-covered set in F . If

τ(F [S]) ≥ 2, then F contains a subgraph F ′ such that F ′ ∈ K3
|S| and τ(F ′[S]) ≥ 2. Moreover,

if 12 ≤ s ≤ |S|, then F has a subgraph F ′′ ∈ K3
s possessing a core S′′ such that τ(F ′′[S′′]) ≥ 2.

Proof. The case r = 3 of Fact 5.3.11 yields a subgraph G of F [S] with at most four edges such

that τ(G) ≥ 2. Notice that |G| ≥ 2 and |∂G| ≥ 5. Since S is 2-covered in F , we can choose for

every pair uw ∈
(
S
2

)
\ ∂G an edge euw ∈ F containing u and w. Now

F ′ =
{
euw : uw ∈

(
S
2

)
\ ∂G

}
∪ G

has the properties that S is 2-covered in F ′ and τ(F ′[S]) ≥ 2. Together with

|F ′| ≤
(
`

2

)
− |∂G|+ |G| ≤

(
`

2

)
− 5 + 4 <

(
`

2

)

this proves F ′ ∈ K3
|S|. Moreover, if any s ∈ [12, |S|] is given, we can take a set S′′ of size s with

V (G) ⊆ S′′ ⊆ S and apply the first part of the lemma to S′′ rather than S.

Lemma 5.3.13. If S denotes a core of F ∈ K3
nt+1 and τ(F [S]) ≥ 2, then F ∈Mt.
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Proof. By the previous lemma and nt ≥ 12 there exists a set S′′ ⊆ S such that |S′′| = nt and

τ(F [S′′]) ≥ 2. Since |F | ≤
(
nt+1

2

)
≤
(
nt
3

)
, we can regard F as a member of K̂3

nt with core S′′

and it remains to prove that F cannot be Gi-colorable for any i ∈ [t]. This is due to the fact

that the shadows of blow-ups of Gi are complete ni-partite graphs, while S induces a Knt+1 in

∂F .

5.3.2.2 Turán numbers of Mt

Having now introduced the main protagonists G1, . . . ,Gt and Mt we shall determine the

extremal numbers ex(n,Mt) in this subsection. More precisely, setting

M(n) = max {|G| : G is Gi-colorable for some i ∈ [t] and v(G) = n}

for every positive integer n we shall prove the following result.

Theorem 5.3.14. The equality ex(n,Mt) = M(n) holds for all positive integers n.

Notice that in view of Lemma 5.3.1 and Equation 5.21 this implies ex(n,Mt) ≤ λtn
3

for every positive integer n. Moreover, whenever n is a multiple of ni for some i ∈ [t], the

balanced blow-up of Gi with factor n/ni exemplifies that this holds with equality. For these

reasons, Theorem 5.3.14 is stronger than Theorem 5.1.9 (a). Let us start with the lower bound

on ex(n,Mt).

Fact 5.3.15. We have ex(n,Mt) ≥M(n) for every positive integer n.
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Proof. This is an immediate consequence of the fact that by Definition 5.3.10 for every i ∈ [t]

all blow-ups of Gi are Mt-free.

Our proof for the upper bound uses the Zykov symmetrization method [252]. The appli-

cability of this technique in the current situation hinges on the fact that if a hypergraph H is

Mt-free, then there is no homomorphism from a member of Mt to H (see Proposition 5.3.16

below). Let us recall that given two r-graphs F and H a map φ : V (F ) −→ V (H) is said to

be a homomorphism if φ preserves edges, i.e., if φ(E) ∈ H holds for all E ∈ F . Further, H

is F -hom-free if there is no homomorphism from F to H or, in other words, if F fails to be

H-colourable. For a family F of r-graphs, we say that H is F-hom-free if it is F -hom-free for

every F ∈ F .

Proposition 5.3.16. A 3-graph H is Mt-hom-free if and only if it is Mt-free.

Proof. Notice that the forward implication is clear. Now suppose conversely that H fails to be

Mt-hom-free, i.e., that there is a homomorphism φ : V (F ) −→ V (H) for some F ∈Mt. Clearly

the restriction of φ to a core S of F is injective. So φ(F ) ∈ K̂3
|S| ∩Mt and in view of φ(F ) ⊆ H

it follows that H fails to be Mt-free.

As an immediate consequence of Definition 5.3.10, semibipartite triple systems areMt-free.

We analyze the semibipartite case as follows.

Lemma 5.3.17. If H denotes a semibipartite triple system on n vertices, then

|H| ≤ min{2n3/27,M(n)}.
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Proof. Fix a partition V (H) = A ∪ B such that |E ∩ A| = 1 holds for every E ∈ H. Now the

AM-GM inequality yields

|H| ≤ |A|
(
|B|
2

)
≤ 2|A| · |B| · |B|

4
≤ 1

4

(
2|A|+ |B|+ |B|

3

)3

=
2n3

27

and it remains to show |H| ≤M(n). If n is large this is an immediate consequence of M(n) =

(λt−o(1))n3 and λt ≥ 5/32 > 2/27, but for a complete proof addressing all values of n we need

to argue more carefully.

To this end we consider a random map φ : [n] −→ [n1] together with the random blow-up Ĝ

of G1 determined by φ. Explicitly Ĝ has vertex set [n] and a triple ijk forms an edge of Ĝ if and

only if φ(i)φ(j)φ(k) ∈ G1. Now every potential edge of Ĝ is present with probability 6|Gi|
n3
1

= 6λt

and thus the expectation of |Ĝ| is 6λt
(
n
3

)
. So by averaging we obtain

M(n) ≥ 6λt

(
n

3

)
≥ 15

16

(
n

3

)
, (5.22)

which for n ≥ 5 implies the desired estimate M(n) ≥ 2n3/27. Moreover, Equation 5.22 yields

M(4) ≥ 3, which still suffices for the case n = 4 of our lemma. Finally, the case n ≤ 3 is trivial.

The central notion in arguments based on Zykov symmetrization is the following: Given an

r-graph H, two non-adjacent vertices u, v ∈ V (H) are said to be equivalent if LH(u) = LH(v).

Evidently, equivalence is an equivalence relation. Since any two equivalent vertices have the
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same degree and the same link, we can write dH(C) and LH(C) for the common degree and the

common link of all vertices in an equivalence class C, respectively.

Lemma 5.3.18. Let H be an Mt-free 3-graph with equivalence classes C1, . . . , Cm. If for all

distinct k, ` ∈ [m] the shadow ∂H induces a complete bipartite graph between Ck and C`, then H

is either semibipartite or Gi-colourable for some i ∈ [t].

Proof. Let T ⊆ V (H) be a set containing exactly one vertex from each equivalence class of H,

and let T be the subgraph of H induced by T . By assumption, T is 2-covered, |T | = m, and H

is a blow-up of T . If τ(T ) < 2, then T is a star and H is semibipartite. So we may assume

τ(T ) ≥ 2 from now on.

Since T is 2-covered and |T | ≤
(
m
3

)
we have T ∈ K̂3

m. So if m ≤ nt, then in view of

Definition 5.3.10 and T 6∈ Mt there exists an index i ∈ [t] such that T is Gi-colorable. As H is

a blow-up of T , it follows that H is Gi-colorable as well.

Now assume for the sake of contradiction that m > nt. Since nt ≥ 12, Lemma 5.3.12 leads

to a subgraph T ′′ ∈ K3
nt+1 of T having a core S′′ such that τ(T ′′[S′′]) ≥ 2. By Lemma 5.3.13

this contradicts H being Mt-free.

Now we are ready to establish the main result of this subsection.

Proof of Theorem 5.3.14. Fix some positive integer n. By Fact 5.3.15 it suffices to establish

the upper bound ex(n,Mt) ≤M(n). Arguing indirectly we choose anMt-free triple system H

on n vertices with more than M(n) edges such that the number m of equivalence classes of H

is minimal. Let C1, . . . , Cm be the equivalence classes of H.
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By Lemma 5.3.17 we know that H is not semibipartite and the definition of M(n) implies

that H fails to be Gi-colorable for every i ∈ [t]. For these reasons, Lemma 5.3.18 tells us that ∂H

is not the complete m-partite graph with vertex classes C1, . . . , Cm. Without loss of generality

we may assume that at least one possible edge between C1 and C2 is missing in ∂H. Due to the

definition of equivalence there are actually no edges between C1 and C2 in ∂H. By symmetry

we may suppose further that dH(C1) ≤ dH(C2).

Now let H′ be the unique 3-graph satisfying V (H′) = V (H), H′ − C1 = H − C1, and

LH′(v) = LH(w) for all v ∈ C1 and w ∈ C2. Observe that {C1 ∪ C2, C3, . . . , Cm} refines the

partition of V (H′) into the equivalence classes of H′ and

|H′| = |H|+ |C1|
(
dH(C2)− dH(C1)

)
≥ |H| >M(n).

So our minimal choice of m implies thatH′ cannot beMt-free. As there exists a homomorphism

from H′ to H, it follows that H fails to be Mt-hom-free. But owing to Proposition 5.3.16 this

contradicts H being Mt-free.

5.3.3 Stability

In this section we prove most of Theorem 5.1.9 (b) – only the proof of ξ(Mt) = t is postponed

to Section 5.3.4. Our goal is to show that after deleting a small number of low-degree vertices

an “almost extremal” Mt-free 3-graph becomes Gi-colorable for some i ∈ [t]. More precisely,

we aim for the following result.
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Theorem 5.3.19. If ε > 0 is sufficiently small, n is sufficiently large, and H is an Mt-free

3-graph on n vertices with |H| ≥ (λt − ε)n3, then the set

Z =
{
u ∈ V (H) : dH(u) ≤ (3λt − 2ε1/2)n2

}

has size at most ε1/2n and the 3-graph H− Z is Gi-colorable for some i ∈ [t].

As the proof of this result will occupy the entire section, we would like to start with a quick

overview. The argument is somewhat similar in spirit to [208; 30; 169] and ultimately it is based

on the Zykov symmetrization method [252]. There are certain kinds of complications that often

arise when one uses this strategy in order to establish stability results and we overcome several

of these common difficulties by introducing the so-called Ψ-trick in Subsection 5.3.3.1. By

means of this trick, the problem to prove Theorem 5.3.19 gets reduced to an apparently much

simpler task: If a triple system H with n vertices and minimum degree (3λt − o(1))n2 can

be made Gi-colorable by deleting a single vertex, then, actually, H itself is Gi-colorable (see

Lemma 5.3.21). The Ψ-trick can also be used to reprove some known stability results with

improved control over the dependence of the constants (see [171]).

The proof of Lemma 5.3.21 is still quite long. We will collect some auxiliary results in

Subsection 5.3.3.2 and defer the main part of the argument to Subsection 5.3.3.3

5.3.3.1 General preliminaries.

This subsection reduces the task of proving Theorem 5.3.19 to the apparently much simpler

task of verifying Lemma 5.3.21 below. There are only few “special properties” of Mt we are
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going to utilize in the course of this reduction and we refer to [171] for a more systematic

treatment.

Throughout this subsection we use the following notation: For every 3-graphH on n vertices

and every ε > 0 we set

Zε(H) =
{
u ∈ V (H) : dH(u) ≤ (3λt − 2ε1/2)n2

}
.

Lemma 5.3.20. If ε ∈ (0, 1), n ≥ ε−1/2 and H is an Mt-free 3-graph on n vertices with at

least (λ− ε)n3 edges, then

(a) the set Zε(H) has at most the size ε1/2n

(b) and the subgraph H′ = H − Zε(H) of H satisfies δ(H′) ≥ (3λt − 3ε1/2)n2 as well as

|H′| ≥ (λt − 2ε1/2)n3.

Proof. Set Z = Zε(H). Assuming that part (a) fails we can take a set X ⊆ Z of size 2
3ε

1/2n ≤

|X| ≤ 2ε1/2n. The definition of Z leads to

|H −X| ≥ (λt − ε)n3 − |X|(3λt − 2ε1/2)n2

≥ (λt − ε)n3 − |X|(3λt − 2ε1/2)n2 − 3
4n(|X| − 2

3ε
1/2n)(2ε1/2n− |X|)

= λt(n− |X|)3 + 3(1/4− λt)n|X|2 + λt|X|3 > λt(n− |X|)3,

where we used λt < 1/6 < 1/4 in the last step. However, by Theorem 5.1.9 (a) this contradicts

the fact that H−X is Mt-free.



230

Now we prove part (b). For every u ∈ V (H′) the definition of Z and (a) yield

dH′(u) ≥ dH(u)− |Z|n ≥ (3λt − 2ε1/2)n2 − ε1/2n2 = (3λt − 3ε1/2)n2.

Similarly, we have

|H′| ≥ |H| − |Z|n2 ≥ (λt − ε)n3 − ε1/2n3 > (λt − 2ε1/2)n3.

The following lemma will be shown to imply Theorem 5.3.19.

Lemma 5.3.21. There exist constants ζ ∈ (0, 1) and N0 ∈ N such that the following holds

for all n ≥ N0. Let H be an Mt-free 3-graph on n vertices with at least (λt − ζ)n3 edges and

δ(H) > (3λt − ζ)n2. If there exists a vertex v ∈ V (H) such that H− v is Gi-colorable for some

i ∈ [t], then H itself is Gi-colorable as well.

We postpone the proof of this result to Subsection 5.3.3.3. The deduction of Theorem 5.3.19

from Lemma 5.3.21 factorises through the following statement.

Lemma 5.3.22. There exists ε ∈ (0, 1/16) such that the following holds for every sufficiently

large integer n. Let H denote an Mt-free 3-graph with n vertices and at least (λt − ε)n3 edges.

If Q ⊆ V (H) has size |Q| ≤ 2ε1/2n and H−Q is Gi-colourable for some i ∈ [t], then H−Zε(H)

is Gi-colourable as well.

Proof of Lemma 5.3.22 using Lemma 5.3.21. We show that ε = ζ2/25 has the desired property,

where ζ denotes the constant provided by Lemma 5.3.21. Given a sufficiently large 3-graph H
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and a set Q as described in the statement of Lemma 5.3.22 we set Q′ = Q \ Zε(H) and

V ′ = V (H) \ (Zε(H) ∪Q).

By our assumption, there is an index i(?) ∈ [t] such that H[V ′] is Gi(?)-colorable. Choose a

set S ⊆ Q′ of maximum size such that H[V ′ ∪ S] is still Gi(?)-colorable. If S = Q′ we are done,

so suppose for the sake of contradiction that there exists a vertex v ∈ Q′ \ S.

Due to the maximality of S the triple system H′ = H[V ′ ∪ S ∪ {v}] is not Gi(?)-colorable.

On the other hand, Lemma 5.3.20 (a) and |Q| ≤ 2ε1/2n entail

δ(H′) > (3λt − 2ε1/2)n2 − |Z(H) ∪Q|n > (3λt − 5ε1/2)n2

and |H′| > (λt − ε)n3 − |Z(H) ∪Q|n2 > (λt − 4ε1/2)n3.

So by Lemma 5.3.21 and ζ = 5ε1/2 the Gi(?)-colorability of H′−v = H[V ′∪S] implies that H′

itself is Gi(?)-colorable as well. This contradiction completes the proof of Lemma 5.3.22.

It remains to deduce Theorem 5.3.19. The argument involves the following invariant of

3-graphs: Given a 3-graph H with equivalence classes C1, . . . , Cm we set Ψ(H) =
∑m

i=1 |Ci|2.

Proof of Theorem 5.3.19 using Lemma 5.3.22. Let ε be the constant delivered by Lemma 5.3.22

and fix a sufficiently large natural number n. Assuming that the conclusion of Theorem 5.3.19

fails for our values of ε and n we pick a counterexample H such that the pair (|H|,Ψ(H)) is

lexicographically maximal. Let C1, . . . , Cm be the equivalence classes of H.



232

Recall that Lemma 5.3.20 (a) tells us |Zε(H)| ≤ ε1/2n. Since H is a counterexample, it

cannot be Gi-colorable for any i ∈ [t]. Moreover, Equation 5.21 yields

|H| > (λt − ε)n3 ≥ (5/32− 1/16)n3 = 3n3/32 > 2n3/27

and thus H cannot be semibipartite. So by Lemma 5.3.18 there exist two equivalence class-

es, say C1 and C2, such that ∂H possesses no edges from C1 to C2. We may assume that

(dH(C1), |C1|) ≤lex (dH(C2), |C2|), where ≤lex indicates the lexicographic ordering on N2.

Pick arbitrary vertices v1 ∈ C1 and v2 ∈ C2 and symmetrize only them. That is, we let H′

be the 3-graph with V (H′) = V (H), H′ − v1 = H − v1 and LH′(v1) = LH(v2). Clearly, if

dH(v1) < dH(v2), then |H′| > |H|. Moreover, if dH(v1) = dH(v2), then |H′| = |H|, |C1| ≤ |C2|,

and

Ψ(H′)−Ψ(H) ≥ (|C1| − 1)2 + (|C2|+ 1)2 − |C1|2 − |C2|2 = 2(|C2| − |C1|+ 1) ≥ 2.

In both cases (|H′|,Ψ(H′)) is lexicographically larger than (|H|,Ψ(H)) and our choice of H

implies that H′ − Zε(H′) is Gi-colourable for some i ∈ [t]. By Lemma 5.3.20 (a) the set

Q = Zε(H′) ∪ {v1} has size |Q| ≤ ε1/2n+ 1 < 2ε1/2n. Since the hypergraph H−Q = H′ −Q is

Gi-colourable, Lemma 5.3.22 implies that H−Z(H) is Gi-colourable too. This contradiction to

the choice of H establishes Theorem 5.3.19.
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5.3.3.2 Transversals

Roughly speaking, the hypergraph H− v appearing in Lemma 5.3.21 arises from an almost

balanced blow-up of Gi by deleting a small number of edges. When we randomly select one

vertex from each partition class of H − v it is thus very likely that the resulting transversal

induces a copy of Gi. In the proof of Lemma 5.3.21 there are several places where we argue

similarly in situations where some vertices from the transversals have been selected in advance.

The precise statement we shall use in these cases is Lemma 5.3.23 below.

Consider a 3-graph with V (G) = [m] and pairwise disjoint sets V1, . . . , Vm. The blow-up

G[V1, . . . , Vm] of G is obtained from G by replacing each vertex j ∈ [m] with the set Vj and

each edge {j1, j2, j3} ∈ G with the complete 3-partite 3-graph with vertex classes Vj1 , Vj2 ,

and Vj3 . For a 3-graph H we say that a partition V (H) =
⋃
j∈[m] Vj is a G-coloring of H if

H ⊆ G[V1, . . . , Vm].

Lemma 5.3.23. Fix a real η ∈ (0, 1) and integers m,n ≥ 1. Let G be a 3-graph with vertex

set [m] and let H be a further 3-graph with v(H) = n. Consider a vertex partition V (H) =⋃
i∈[m] Vi and the associated blow-up Ĝ = G[V1, . . . , Vm] of G. If two sets T ⊆ [m] and S ⊆⋃
j 6∈T Vj have the properties

(a) |Vj | ≥ (|S|+ 1)|T |η1/3n for all j ∈ T ,

(b) |H[Vj1 , Vj2 , Vj3 ]| ≥ |Ĝ[Vj1 , Vj2 , Vj3 ]| − ηn3 for all {j1, j2, j3} ∈
(
T
3

)
,

(c) and |LH(v)[Vj1 , Vj2 ]| ≥ |LĜ(v)[Vj1 , Vj2 ]| − ηn2 for all v ∈ S and {j1, j2} ∈
(
T
2

)
,
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then there exists a selection of vertices uj ∈ Vj for all j ∈ [T ] such that U = {uj : j ∈ T}

satisfies Ĝ[U ] ⊆ H[U ] and LĜ(v)[U ] ⊆ LH(v)[U ] for all v ∈ S. In particular, if H ⊆ Ĝ, then

Ĝ[U ] = H[U ] and LĜ(v)[U ] = LH(v)[U ] for all v ∈ S.

Proof. Choose for j ∈ T the vertices uj ∈ Vj independently and uniformly at random and let

U = {uj : j ∈ T} be the random transversal consisting of these vertices. By (a) and (b) we

have

P ({uj1 , uj2 , uj3} 6∈ H) = 1− |H[Vj1 , Vj2 , Vj3 ]|
|Vj1 ||Vj2 ||Vj3 |

≤ ηn3

|Vj1 ||Vj2 ||Vj3 |
≤ 1

(|S|+ 1)3|T |3

for all edges {j1, j2, j3} ∈ G. Similarly (a) and (c) lead to

P
(
{uj1 , uj2} 6∈ LH(v) | {uj1 , uj2} ∈ LĜ(v)

)
= 1− |LH(v)[Vj1 , Vj2 ]|

|Vj1 ||Vj2 |
≤ ηn2

|Vj1 ||Vj2 |

≤ η1/3

(|S|+ 1)2|T |2

for all v ∈ S and all distinct j1, j2 ∈ [m]. Therefore, the union bound reveals

P
(
Ĝ[U ] 6⊆ H[U ]

)
≤
(
|T |
3

)
1

(|S|+ 1)3|T |3
<

1

6

and P
(
LĜ(v) 6⊆ LH(v)

)
≤
(
|T |
2

)
η1/3

(|S|+ 1)2|T |2
<

1

2(|S|+ 1)
for every v ∈ S.
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Altogether, the probability that U fails to have the desired properties is at most

1

6
+

|S|
2(|S|+ 1)

<
2

3
.

So the probability that U has these properties is positive.

In practice the sets U obtained by means of Lemma 5.3.23 will be 2-covered and thus they

will be cores of some subgraphs F ∈ K̂3
|U | of H. In such situations F will be Mt-free and in

order to exploit this fact we need to know that for i 6= j the triple system Gi is in some sense far

from being Gj-colorable (see Lemma 5.3.25 below). The verification of this statement requires

that we take a closer look into Construction 5.3.9 and the observation that follows summarizes

everything we need in the sequel.

Observation 5.3.24. The triple systems G1, . . . ,Gt have the following properties.

(a) For i ∈ [t] and v ∈ Gi the clique number ω (LGi(v)) of the link graph LGi(v) satisfies

ni − 1

ki − 1
− ki

2
≤ ω (LGi(v)) ≤ ni − 1

ki − 1
.

(b) We have

ni − 1

ki − 1
− ni+1 − 1

ki+1 − 1
>
Q

k2
i

for every i ∈ [t− 1], where

Q =
n1

k1 + 1
= · · · = nt

kt + 1
≥ 2k3

t ≥ 16.
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(c) For i ∈ [t] the 3-graph Gi is regular with degree 3λtn
2
i and

7ni/8 ≤ ni − 3ki/2 ≤ δ2(Gi) ≤ ∆2(Gi) ≤ ni − ki.

Proof. Part (a) follows from the fact that due to Gi = (K3
ni \H(Di)) \ Si the link LGi(v) arises

from an ((ni − 1)/(ki − 1))-partite Turán graph by the deletion of ki/2 edges. The proof of

part (c) is similar. For part (b) it suffices to calculate

ni − 1

ki − 1
− ni+1 − 1

ki+1 − 1
=
Q(ki + 1)− 1

ki − 1
− Q(ki+1 + 1)− 1

ki+1 − 1

= (2Q− 1)

(
1

ki − 1
− 1

ki+1 − 1

)
≥ Q

(
1

ki − 1
− 1

ki

)
>
Q

k2
i

.

As indicated earlier, this has the following consequence.

Lemma 5.3.25. If i ∈ [t] and the triple system G′i arises from Gi by the deletion of at most

Q/(2k2
i ) vertices, then G′i fails to be Gj-colorable for every j ∈ [t] \ {i}.

Proof. Suppose first that j ∈ [i− 1]. Due to

δ2(G′i) ≥ δ2(Gi)−
Q

2k2
i

≥ 1
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we know that G′i is 2-covered. Together with

v(G′i) = ni −Q/(2k2
i ) > Q(ki + 1)−Q ≥ Q(kj + 1) = nj

it follows that G′i is indeed not Gj-colorable.

If j ∈ (i, t] we take an arbitrary vertex v ∈ V (G′i). The parts (a) and (b) of Observation 5.3.24

yield

ω
(
LG′i(v)

)
≥ ω (LGi(v))− Q

2k2
i

≥ ni − 1

ki − 1
− ki

2
− Q

2k2
i

>
nj − 1

kj − 1
.

On the other hand, by Observation 5.3.24 (a) again, any Gj-coloring of G′i would show that

ω
(
LG′i(v)

)
≤ ω

(
LGj (v)

)
≤ nj − 1

kj − 1
.

On most occasions the following corollary of Lemma 5.3.25 will suffice.

Corollary 5.3.26. If i ∈ [t], the 3-graph H is Mt-free and U ⊆ V (H) denotes a 2-covered set

of size ni + 1, then H[U ] is Gi-free.

Proof. Assume for the sake of contradiction that H[U ] has a subgraph isomorphic to Gi. If i < t

we can take a subgraph F ∈ K̂3
ni+1 ofH with F [U ] = H[U ] having U as a core. AsH[U ] contains

a copy of Gi, we have τ(F [U ]) ≥ 2. Now F 6∈ Mt implies that F is Gj-colorable for some j ∈ [t].
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In particular, Gi is Gj-colorable and by Lemma 5.3.25 this leads to i = j. In other words, F is

Gi-colorable, contrary to the fact that ∂F contains a copy of Kni+1.

It remains to discuss the case i = t. Now Lemma 5.3.12 yields a subgraph F ′ of F which

belongs to K3
nt+1, and whose induced subgraph on its core has covering number at least 2. By

Lemma 5.3.13 this contradicts H being Mt-free.

5.3.3.3 Proof of the main lemma

This entire subsection is devoted to the proof of Lemma 5.3.21. Select constants ζ and N0

fitting into the hierarchy

N−1
0 � ζ � n−1

t .

Consider an Mt-free 3-graph H on n ≥ N0 vertices satisfying |H| ≥ (λt − ζ)n3 and δ(H) ≥

(3λ − ζ)n2 such that for some v ∈ V (H) and i ∈ [t] the 3-graph Hv = H \ {v} is Gi-colorable.

Set V = V (H) and fix a partition
⋃
i∈[ni]

Vi = V \ {v} exemplifying the Gi-colorability of Hv.

We divide the argument that follows into three main parts each of which consists of several

claims.

Part I. Analysis of Hv. The three claims that follow only deal with Hv but say nothing

about v and its link.

Claim 5.3.27. We have |Vj | = n/ni ± 5ζ1/2n for every j ∈ [ni].
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Proof. Set xj = |Vj |/(n − 1) for every j ∈ [ni]. By Proposition 5.4.2 (and the proof of Lem-

ma 5.3.1) we obtain

|Hv| = LGi(x1, . . . , xni)(n− 1)3 ≤

λt − 1

9

∑
j∈[ni]

(
xj −

1

ni

)2
n3.

Combined with

|Hv| ≥ (λt − ζ)n3 − dH(v) > (λt − 2ζ)n3

this leads to 1
9

∑
j∈[ni]

(xj − 1/ni)
2 ≤ 2ζ, whence xj = 1/ni ± (18ζ)1/2 and

∣∣|Vj | − n/ni∣∣ ≤ (n− 1)
∣∣xj − 1/ni

∣∣+ 1/ni ≤ (18ζ)1/2n+ 1/ni ≤ 5ζ1/2n.

Recall that the sets V1, . . . , Vni have been chosen in such a way that Hv is a subgraph of the

blow-up Ĝi = Gi[V1, . . . , Vni ] of Gi. Our next objective is to compare the links of an arbitrary

vertex u ∈ V \ {v} in Hv and in Ĝ. As a consequence of Hv ⊆ Ĝi we know LHv(u) ⊆ LĜi(u)

and |LHv(u)| ≤ |LĜi(u)|. Members of LĜi(u) \LHv(u) are referred to as the missing pairs of u.

By Lemma 5.3.1 the global number of missing edges can be bounded from above by

∣∣Ĝi \ Hv∣∣ ≤ λt(n− 1)3 − (λt − ζ)n3 + dH(v) ≤ 2ζn3. (5.23)

Locally we obtain the following.
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Claim 5.3.28. Every u ∈ V \ {v} satisfies |LĜi(u)| < (3λt + 6niζ
1/2)n2. Moreover the number

of missing pairs of u is bounded by |LĜi(u) \ LHv(u)| < 7ζ1/2nin
2.

Proof. Since Gi is (3λtn
2
i )-regular, Claim 5.3.27 yields

∣∣LĜi(u)
∣∣ ≤ 3λtn

2
i

(
n

ni
+ 5ζ1/2n

)2

= 3λtn
2
(

1 + 5ζ1/2ni

)2
< (3λt + 6ζ1/2ni)n

2,

where we used λt < 1/6 and our hierarchy ζ � n−1
i . Owing to the minimum degree condition

δ(H) ≥ (3λt − ζ)n2 this entails the upper bound

∣∣LĜi(u) \ LHv(u)
∣∣ ≤ (3λtn

2 + 6ζ1/2nin
2
)
−
(
3λtn

2 − ζn2 − n
)
< 7ζ1/2nin

2

on the number of missing pairs of u.

It can now be shown that in Hv all neighborhoods have roughly the expected size ni−1
ni

n,

but for our concerns it suffices to establish a lower bound.

Claim 5.3.29. We have |NHv(u)| ≥ ni−1
ni

n− 17ζ1/2nin for every u ∈ V \ {v}.

Proof. Let j ∈ [ni] be the index satisfying u ∈ Vj . Since every vertex in V \ (Vj ∪NHv(u)∪{v})

belongs to at least δ2(G)·min{|V`| : ` ∈ [ni]} missing pairs of u, and every missing pair is counted

at most twice in this manner, Claim 5.3.28 yields

∣∣V \ (Vj ∪NHv(u) ∪ {v})
∣∣ · δ2(G) ·min

{
|V`| : ` ∈ [ni]

}
< 14ζ1/2nin

2.
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So by Observation 5.3.24 (c) and Claim 5.3.27 the assumption |NHv(u)| < ni−1
ni

n − 17ζ1/2nin

would yield the contradiction

(
17ζ1/2nin− 5ζ1/2n− 1

)
· 7ni

8
·
(
n

ni
− 5ζ1/2n

)
< 14ζ1/2nin

2.

Thereby Claim 5.3.29 is proved.

Part II. Choice of a vertex class for v. Our strategy for showing that H is Gi-colorable is

to adjoin v to one the partition classes V1, . . . , Vnt . In fact, there is only one of these classes v

fits into. Before finding this class we show a statement that has to hold if our plan is sound.

Claim 5.3.30. We have LH(v) ∩
(Vj

2

)
= ∅ for every j ∈ [ni].

Proof. Without loss of generality we may assume that j = 1. Let u0, u1 ∈ V1 be two distinct

vertices. By Lemma 5.3.23 applied to S = {u0, u1} and T = [2, ni] there exist vertices uj ∈ Vj

for j ∈ [2, ni] such that the subgraphs of H induced by {u0, u2, . . . , uni} and {u1, u2, . . . , uni}

are isomorphic to Gi. Now Corollary 5.3.26 informs us that the set U = {u0, u1, . . . , unt} cannot

be 2-covered, for which reason u0u1 6∈ ∂H. So, in particular, we have u0u1 6∈ LH(v).

Claim 5.3.31. There exists j ∈ [ni] such that |NH(v) ∩ Vj | < ζ1/7n.

Proof. Suppose for the sake of contradiction that the sets Wj = NH(v)∩Vj satisfy |Wj | ≥ ζ1/7n

for every j ∈ [ni]. Applying Lemma 5.3.23 to Wj here in place of Vj there and to S = ∅, T = [ni]

we obtain vertices uj ∈ Vj for all j ∈ [ni] such that the set U = {u1, . . . , uni} induces a copy of

Gi in H. But now the 2-covered set U ∪ {v} contradicts Corollary 5.3.26.
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It will turn out later that the index j delivered by Claim 5.3.31 is unique. Without loss of

generality we may assume that

|NH(v) ∩ V1| < ζ1/7n. (5.24)

Part III. The link of v. It remains to show that LH(v) ⊆ L
Ĝi

(V1). To this end we define

Nv(u) =
{
j ∈ [ni] : |NH(u, v) ∩ Vj | ≥ ζ1/7n

}

for every u ∈ NH(v) . The upper bound on ∆2(Gi) in Observation 5.3.24 (c) transfers to these

sets as follows.

Claim 5.3.32. We have |Nv(u)| ≤ ni − ki for every u ∈ NH(v).

Proof. Assume for the sake of contradiction that there is a set N? ⊆ Nv(u) such that |N?| =

ni − ki + 1 < ni − 2. As in the proof of Claim 5.3.31 there exist vertices uj ∈ NH(u, v) ∩ Vj for

j ∈ N? such that Gi[N?] is isomorphic to H[U ], where U = {uj : j ∈ N?}.

Now we consider the 3-graph F = H[U ∪ {u, v}]. Clearly U ∪ {u, v} is 2-covered in F and

τ(F ) ≥ τ(Gi[N?]) ≥ 2. So F 6∈ Mt tells us that F is Gs-colorable for some s ∈ [t].

On the other hand by Lemma 5.3.25 and |U | ≥ ni − ki + 2 > ni − Q/(2k2
i ) the subgraph

F [U ] of F cannot be Gs-colorable for any s ∈ [t] \ {i}.

Summarizing this discussion, F is Gi-colorable. As F is also 2-covered, F is actually iso-

morphic to a subgraph of Gi and, consequently, ni − ki < |N?| = dF (u, v) ≤ ∆2(Gi), contrary

to Observation 5.3.24 (c).
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Claim 5.3.33. We have |NH(v) ∩ Vj | ≥ ζ1/7n for every j ∈ [2, ni].

Proof. The minimum degree condition imposed on H and 6λt = 1− ki+1
ni

yield

(
1− ki + 1

ni
− 2ζ

)
n2 = 2(3λt − ζ)n2 ≤ 2dH(v) ≤ ∆

(
LH(v)

)
|NH(v)|.

Claim 5.3.32 allows us to bound the first factor on the right side from above by

∆
(
LH(v)

)
≤ (ni − ki)

(
n

ni
+ 5ζ1/2n

)
+ kiζ

1/7n <
ni − ki
ni

n+ 2kiζ
1/7n.

Altogether we obtain

ni − (ki + 1)− 2niζ

(ni − ki) + 2kiniζ1/7
≤ |NH(v)|

n
,

which due to

ni − (ki + 1)

ni − ki
= 1− 1

ni − ki
> 1− 5/4

ni

and ζ � n−1
i implies (

1− 3/2

ni

)
n ≤ |NH(v)|.

On the other hand, setting I =
{
j ∈ [2, ni] : |NH(v) ∩ Vj | ≥ ζ1/7n

}
Claim 5.3.27 and Equa-

tion 5.24 lead to

|NH(v)| ≤ |I|
(

1

ni
+ 5ζ1/2

)
n+ ζ1/7nin.

Combining both estimates we arrive at |I| > ni − 7/4, whence I = [2, ni].
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Claim 5.3.34. We have NH(v) ∩ V1 = ∅.

Proof. Suppose that there exists u1 ∈ NH(v) ∩ V1. Owing Claim 5.3.33 we can apply Lemma

5.3.23 with S = {u1} and T = [2, ni] in order to obtain vertices uj ∈ NH(v) ∩ Vj for j ∈ [2, ni]

such that H induces a copy of Gi on U = {u1, . . . , uni}. Since U ∪ {v} is 2-covered, this

contradicts Corollary 5.3.26.

Let us recall that LĜi(V1) denotes the common Ĝi-link of all vertices in V1.

Claim 5.3.35. We have LH(v) ⊆ LĜi(V1).

Proof. Due to the Claims 5.3.30 and 5.3.34 we know that LH(v) is an (ni − 1)-partite graph

with vertex classes V2, . . . , Vni . So if Claim 5.3.35 fails we may assume without loss of generality

123 6∈ Gi and that there exists a pair u2u3 ∈ LH(v) with u2 ∈ V2, u3 ∈ V3.

Since |V1| > n/(2ni) and |NH(v) ∩ Vj | ≥ ζ1/7n for j ∈ [4, ni], Lemma 5.3.23 applied to

S = {u2, u3} and T = {1, 4, . . . , ni} delivers vertices u1 ∈ V1 and uj ∈ NH(v)∩ Vj for j ∈ [4, ni]

such that the set U ′ = {u1, u4, . . . , uni} satisfies

H[U ′] = Ĝi[U ′] and LH(u`)[U
′] = LĜi(u`)[U

′] for ` = 2, 3. (5.25)

Consider the set U = {u1, . . . , uni}. Because of Equation 5.25 and 123 6∈ Gi the map i 7−→ ui is

an embedding of LGi(1) into H and for this reason we have

dH[U ](u1) ≥ dGi(1). (5.26)
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Next we choose for every j ∈ [4, ni] an edge ej ∈ H such that uj , v ∈ ej and observe that U

is 2-covered in the 3-graph

F = {vu2u3} ∪ {ej : 4 ≤ j ≤ ni} ∪ H[U ].

Moreover, |F | ≤ |Gi| + ni − 2 <
(
ni
3

)
implies F ∈ K̂3

ni . Since F [U ′] = H[U ′] is isomorphic to

Gi − {2, 3}, Lemma 5.3.25 tells us that F cannot be Gj-colorable for any j ∈ [t] \ {i}. But on

the other hand we have τ(F [U ]) ≥ 2 and F 6∈ Mt, so altogether F is Gi-colorable.

Fix a homomorphism φ : V (F ) −→ V (Gi) from F to Gi. Since U and Uv = U ∪ {v} \ {u1}

are 2-covered subsets of F whose size is ni = v(Gi), the map φ has to be bijective on U

and Uv, which is only possible if φ(v) = φ(u1). Now φ embeds the link LF [U ](u1) into the

link LGi(φ(u1)). Moreover, vu2u3 ∈ F implies that φ(u2)φ(u3) belongs to the link LGi(φ(u1))

as well and by 123 6∈ Gi this edge is not in the image φ(LF [U ](u1)). Altogether this proves

dF [U ](u1) + 1 ≤ dGi(φ(u1)), which in view of F [U ] = H[U ] and Equation 5.26 contradicts the

regularity of Gi.

By Claim 5.3.35 the partition
⋃
j∈[ni]

V̂j , where

V̂j =


V1 ∪ {v} if j = 1

Vj if 2 ≤ j ≤ ni

is a Gi-coloring of H. This completes the proof of Lemma 5.3.21.
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5.3.4 Feasible region of Mt and ξ(Mt)

We prove Theorem 5.1.10 and that ξ(Mt) = t in this section. First, let us show a simple

lemma.

Lemma 5.3.36. Suppose that H is an n-vertex Gi-colorable 3-graph for some i ∈ [t]. If |H| ≥

(λt − ε)n3, then |∂H| ≥
(
ni−1
2ni
− 3ε1/2ni

)
n2.

Proof. Let V (H) =
⋃
j∈[ni]

Vj be a Gi-coloring of H. Now by Proposition 5.4.2, |Vj | = (1/ni ±

3ε1/2)n for all j ∈ [ni]. Call a pair {u, v} with u ∈ Vj , v ∈ Vk and j 6= k missing if uv 6∈ ∂H,

and let M denote the set of all missing pairs. Since δ2(Gi) ≥ 7ni/8, we obtain

|M | · 7ni
8
·
(

1

ni
− 3ε1/2

)
n ≤ 3εn3,

which yields |M | < 4εn2. Therefore,

|∂H| >
(
ni
2

)
×
(

1

ni
− 3ε1/2

)2

n2 − |M | > ni − 1

2ni
n2 − 3ε1/2nin

2.

We remark that the stronger conclusion |∂H| ≥
(
ni−1
2ni
− 5εni

)
n2 could be shown by arguing

more carefully, but this is immaterial to what follows.

Proof of Theorem 5.1.10. Recall from Section 5.3.2 that semibipartite 3-graphs are Mt-free.

This yields projΩ(Mt) = [0, 1], as for every x ∈ [0, 1] there exists a good sequence of semibi-

partite 3-graphs such that the edge densities of their shadows converges to x.
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Theorem 5.1.9 (a) implies that g(Mt, x) ≤ 6λt for all x ∈ [0, 1]. Furthermore for every

i ∈ [t] the sequence of balanced blow-ups of Gi shows the equality g(Mt, 1 − 1/ni) = 6λt. So,

in order to finish the proof it suffices to show that if some x ∈ [0, 1] satisfies g(Mt, x) = 6λt,

then there is an index i ∈ [t] such that x = 1− 1/ni.

Fix such an x ∈ [0, 1] and let (Hn)∞n=1 be a good sequence of Mt-free 3-graphs realizing

(x, 6λt). Consider an arbitrary δ > 0 and let ε > 0, N0 be the constants guaranteed by Theo-

rem 5.1.9 (b). Without loss of generality we may assume ε ≤ δ. By our choice of (Hn)∞n=1 there

exists n0 ∈ N such that

d(Hn) = 6λt ± ε and d(∂Hn) = x± ε

hold for all n ≥ n0. By Theorem 5.1.9 (b), for every n ≥ max{n0, N0} the 3-graph Hn is

Gi-colorable for some i = i(n) ∈ [t] after removing at most δv(Hn) vertices. Therefore,

|∂Hn| ≤
(
ni − 1

2ni
+ δ

)
v(Hn)2,

and, on the other hand, by Lemma 5.3.36,

|∂Hn| >
(
ni − 1

2ni
− 3ε1/2ni

)
(1− δ)2v(Hn)2 >

ni − 1

2ni
v(Hn)2 −

(
3ε1/2ni + 2δ

)
v(Hn)2.
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Summarizing and taking ε ≤ δ into account we arrive at

ni − 1

ni
−
(

6δ1/2nt + 4δ
)
< d(∂Hn) ≤ ni − 1

ni
+ 2δ, (5.27)

where, let us recall, i = i(n) might depend on n. So what (Equation 5.27) means is that if we

set

Ii(δ) =

[
ni − 1

ni
− 6δ1/2ni − 4δ,

ni − 1

ni
+ 2δ

]

for every i ∈ [t], then

d(∂Hn) ∈ I1(δ) ∪ · · · ∪ It(δ)

holds for every n ≥ n0. As the set on the right side is closed we obtain

x ∈ I1(δ) ∪ · · · ∪ It(δ)

in the limit n→∞. Since δ > 0 was arbitrary,

x ∈
⋂
δ>0

(
I1(δ) ∪ · · · ∪ It(δ)

)
=
{

1− 1/ni : i ∈ [t]
}

follows.

Recall that we already proved thatMt is t-stable, which, by definition, shows that ξ(Mt) ≤

t. Therefore, in order to prove ξ(Mt) = t it suffices to show that ξ(Mt) ≥ t, and this is an

easy consequence of the following proposition and Theorem 5.1.10.
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Proposition 5.3.37. Let F be a family of r-graphs and let M be the set of global maxima

of g(F). If M is finite, then |M | ≤ ξ(F).

Proof. If F is degenerate, then g(F) is the constant function whose value is always 0 and M

is infinite. So we may assume that the Turán density y = π(F) is positive. Let us write

M = {(xi, y) : i ∈ [m]} such that x1 < · · · < xm and m = |M |. For every i ∈ [m] we select

a good sequence (Hi(n))∞n=1 of F-free r-graphs realizing (xi, y). Without loss of generality we

have v(Hi(n)) = n for every positive integer n. Now suppose for the sake of contradiction that

t = ξ(F) is smaller than m.

Claim 5.3.38. For every δ > 0 there are distinct i, j ∈ [m] and n > 1/δ such that

d1(Hi(n),Hj(n)) ≤ δnr and min{|Hi(n)|, |Hj(n)|} ≥ (y − δ)
(
n

r

)
.

Proof. By the definition of ξ(F) = t there are n0 ∈ N and ε > 0 such that for every n ≥ n0 there

exists a family {G1(n), . . . ,Gt(n)} of r-graphs on n vertices such that for every F-free r-graph

H with v(H) = n and |H| ≥ (y − ε)
(
n
r

)
there is some s ∈ [t] such that d1(H,Gs(n)) ≤ (δ/2)nr

As usual, we may suppose that ε ≤ δ.

Now choose n ≥ n0, δ
−1 such that for every i ∈ [m] we have d(Hi(n)) ≥ y − ε. Stability

allows us to select for every i ∈ [m] an index s(i) ∈ [t] such that d1(Hi(n),Gs(n)) ≤ δnr. By
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t < m the map i 7−→ s(i) cannot be injective, i.e., there are distinct i, j ∈ [m] and s ∈ [t] such

that s(i) = s(j) = s. Now the triangle inequality yields

d1(Hi(n),Hj(n)) ≤ d1(Hi(n),Gs(n)) + d1(Gs(n),Hj(n)) ≤ δnr,

as desired.

Notice that, as stated, Claim 5.3.38 allows i and j to depend on δ. However, a quick thought

reveals that there actually have to be two indices i < j that work for every δ > 0. Now we

intend to contradict the finiteness of M by proving [xi, xj ]× {y} ⊆M .

To this end, let x ∈ [xi, xj ] and a large integer N be given. It suffices to construct an F-free

r-graphH satisfying v(H) > N , d(∂H) = x±1/N and d(H) = y±1/N . By Claim 5.3.38 applied

to δ � N−1 there is some n > N such that d1(Hi(n),Hj(n)) ≤ δnr and min{|Hi(n)|, |Hj(n)|} ≥

(y − δ)
(
n
r

)
. Assume without loss of generality that

|Hi(n)4Hj(n)| ≤ δnr.

Now consider the following process transformingHi(n) intoHi(n): Start withHi(n) and remove

edges one by one until Hi(n) ∩ Hj(n) is reached. Then, keep adding edges one by one until

you arrive at Hj(n). Every r-graph occurring along the way is F-free. Moreover, since deleting

or adding an edge can affect the size of the shadow by at most r, in every step of the process

the shadow density changer by at most r/
(
n
r−1

)
. Thus at some moment we pass an r-graph
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H such that |d(∂H) − x| ≤ r/
(
n
r−1

)
≤ δ. Finally, d(H) ≥ d(Hi(n) ∩ Hj(n)) ≥ d(Hi(n)) −

|Hi(n)4Hj(n)|/
(
n
r

)
≥ y −O(δ) completes the proof that H has all desired properties.

5.3.5 Concluding remarks

For every positive integer t we constructed a family of 3-graphs {G1, . . . ,Gt} that have the

same Lagrangian λt, and we showed that there is a family Mt of 3-graphs whose extremal

configurations are balanced blow-ups of G1, . . . ,Gt, and whose stability number is ξ(Mt) = t.

Notice that our choice of λt is very close to 1/6, which is the supremum of the Lagrangians

of all 3-graphs. It would be interesting to find for every integer t ≥ 2 the minimum value (if

it exists) of λ = λ(t) so that there exists a t-stable family Ft with π(Ft) = 6λ. A result of

Erdős [58] implies that there are no Turán densities in the interval (0, 2/9). This motivates the

following question.

Problem 5.3.39. Does there exist a family F of triple systems with π(F) = 2/9 but ξ(F) 6= 1?

For a family F of r-graphs let M(F) = {x ∈ projΩ(F) : g(F)(x) = π(F)) be the set of

abscissae of the global maxima of its feasible region function. As we have shown here, |M(F)|

can be every finite cardinal except zero. In would be interesting to know whether M(F) can

be infinite and, in case the answer is affirmative, there immediately arise further questions.

Problem 5.3.40. For r ≥ 3 does there exist a non-degenerate family F of r-graphs so that

g(F) has infinitely many global maxima? If so, can the set M(F) be uncountable? Can it even

contain a non-trivial interval?
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Notice that if the last question on intervals has a negative answer, then in Proposition 5.3.37

the assumption that M should be finite can be omitted. In fact, it is somewhat bizarre that we

do not know the following.

Problem 5.3.41. Let F be a non-degenerate family of r-graphs such that M(F) is infinite.

Can it nevertheless happen that F has finite stability number?
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5.4 Proof for t-stable families of r-graphs

In this section we prove Theorems 5.1.11 and 5.1.12.

5.4.1 Preliminaries

Denote by M(F) the set of global maxima of g(F) and m(F) = |M(F)|.

Proposition 5.4.1. Let n0 > 0, c > 0 be constants and F be a family of r-graphs with ξv(F) = t.

Suppose that F is vertex-t-stable respects to G1(n), . . . ,Gt(n), and Gi(n) satisfies δr−1(Gi(n)) ≥

cn for every n ≥ n0 and i ∈ [t]. Then m(F) ≤ t.

Proof. By assumption we have limn→∞ d (Gi(n)) = π(F) for i ∈ [t]. Also we may assume that

limn→∞ d (∂Gi(n)) = xi for i ∈ [t] since otherwise we can take a convergence subsequence.

Without loss of generality we may assume that x1 ≤ · · · ≤ xt.

We claim that M(F) = {(xi, π(F)) : i ∈ [t]}. Indeed, suppose this is not true and there

exists x0 ∈ projΩ(F) with x0 6= xi for i ∈ [t] such that (x0, π(F)) ∈M(F). Then let (H(n))∞n=1

be an F-free good sequence that realizes (x0, π(F)). Without loss of generality we may assume

that v(H(n)) = n for n ≥ 1. For every δ > 0 there exist n(δ) such that for every n ≥ n(δ) there

exists a set Zn ⊂ V (H) of size at most δn so that the r-graph H′(n) = H(n)−Zn is a subgraph

of Gi(n) for some i ∈ [t]. So,

|∂H(n)| ≤ |∂H′(n)|+ |Zn|
(

n

r − 2

)
≤ |∂Gi(n)|+ |Zn|

(
n

r − 2

)
≤ |∂Gi(n)|+ δn

(
n

r − 2

)
,
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and by assumption

|∂H(n)| ≥ |∂H′(n)| ≥ |∂Gi(n)| − r (|Gi(n)| − |H′(n)|)
cn

≥ |∂Gi(n)| − r (δnr + o(nr))

cn

≥ |∂Gi(n)| − r
(
δnr−1 + o(nr−1)

)
.

Letting δ → 0 we obtain x0 = limn→∞ d (∂H(n)) = limn→∞ d (∂Gi(n)) = xi, a contradiction.

For an r-graph H and a set S ⊂ V (H) of size s < r the neighborhood of S is

NH(S) = {u ∈ V (H) \ S : ∃A ∈ H such that {u} ∪ S ⊂ A} ,

and the link of S is an (r − s)-graph on NH(S) which is defined as

LH(S) = {A ∈ ∂r−sH : A ∪ S ∈ H} .

The degree of S is dH(S) = |LH(S)|, and denote by δs(H),∆s(H) the minimum and maximum

s-degree of H, respectively. In other words,

δs(H) = min

{
dH(S) : S ∈

(
V (H)

s

)}
and ∆s(H) = max

{
dH(S) : S ∈

(
V (H)

s

)}
.
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Recall that a k-graph D is an (n, k)-design if it has n vertices and every pair of vertices is

covered by a unique edge. With every such design D we associate the 3-graph H(D) on V (D),

where

H(D) =
⋃
E∈D

(
E

3

)
.

The following result determines the Lagrangian of a 3-graph obtained from a complete

3-graph by removing edges in H(D) and a sparse regular 3-graph that is disjoint from H(D).

Proposition 5.4.2. Suppose that n ≥ 18k + 37s3, D is an (n, k)-design on [n], and S is an

s-regular 3-graph on [n]. If S ∩H(D) = ∅ and G = K3
n \ (H(D) ∪ S), then

LG(x1, . . . , xn) +
1

9

n∑
i=1

(
xi −

1

n

)2

≤ |G|
n3

=
1

6

(
1− k + 1

n
+
k − 2s

n2

)
(5.28)

holds for all (x1, . . . , xn) ∈ ∆n−1.

For every 3-graph G we define an r-graph Gr be with vertex set V (G) ∪ C, where C (called

the center of Gr) is a set of size r − 3 disjoint from V (G), and

Gr = {C ∪ E : E ∈ G} .

Lemma 5.4.3. Let G be a 3-graph on n vertices that satisfies the conditions in Proposition 5.4.2.

Then the followings hold.

(a) λ(Gr) = 27λ(G)/rr, and
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(b) for every ε ≥ 0 and (x1, . . . , xn̂) ∈ ∆n̂, where n̂ = n+r−3, if LGr(x1, . . . , xn̂) ≥ λ(Gr)−ε,

then

xj =


1/r ± rr/2−1ε1/2, j ∈ [r − 3],

3/rn± 2rr/2+1ε1/2, j ∈ [r − 2, n̂].

Proof. Let r̂ = r − 3, λ = λ(G), and λ(r) = λ(Gr). Let (x1, . . . , xn̂) ∈ ∆n̂−1 and x =
∑

j∈[r̂] xj .

Then

LGr(x1, . . . , xn̂) = LG(xr̂+1, . . . , xn̂)
∏
j∈[r̂]

xj ≤ λ(1− x)3

(
x

r − 3

)r−3

≤ 27λ

rr
,

and equality holds if

x1 = · · · = xr̂ = 1/r and xr̂+1 = · · · = xn̂ = 3/rn.

Therefore, λ(Gr) = 27λ/rr.

Now we prove (b). Suppose for the contrary that there exists j ∈ [r̂] such that |xj−1/r| > ε1,

where ε1 = rr/2−1ε1/2, and without loss of generality we may assume that j = 1. Then

LGr(x1, . . . , xn̂) = LG(xr̂+1, . . . , xn̂)
∏
j∈[r̂]

xj ≤ λ(1− x)3x1

∏
2≤j≤r̂

xj

≤ λ(1− x)3x1
(x− x1)r−4

(r − 4)r−4
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Viewing (1− x)3(x− x1)r−4 as a function in x we obtain

(1− x)3(x− x1)r−4 ≤ 27(r − 4)r−4

(r − 1)r−1
(1− x1)r−1.

Therefore,

LGr(x1, . . . , xn̂) ≤ 27λ

(r − 1)r−1
x1(1− x1)r−1

<
27λ

(r − 1)r−1

(
1

r
− ε1

)(
r − 1

r
+ ε1

)r−1

<
27λ

(r − 1)r−1

1

r
(1− rε1)×

(
r − 1

r

)r−1

(1 + rε1)

<
27λ

rr
(1− r2ε21) = λ(r) − ε,

a contradiction.

Now, suppose that |xj − 3/rn| > ε2 for some j ∈ [r̂+ 1, n̂], where ε2 = 2rr/2+1ε1/2. Without

loss of generality we may assume that j = r̂ + 1. Then, by Equation 5.28,

LGr(x1, . . . , xn̂) = LG(xr̂+1, . . . , xn̂)
∏
j∈[r̂]

xj

≤ xr−3

(r − 3)r−3
(1− x)3

λ− 1

9

∑
j∈[r̂+1,n̂]

(
xj

1− x
− 1

n

)2


≤ 27

rr

(
λ− 1

9

(
x1

1− x
− 1

n

)2
)

= λ(r) − 3

rr

(
x1

1− x
− 1

n

)2

.



258

It follows from 1− x = 1−
∑

j∈[r̂] xj = 3/r ± rε1 and |x1 − 3/rn| > ε2 that

∣∣∣∣ x1

1− x
− 1

n

∣∣∣∣ > ε2 − r2ε1 >
ε2
2
.

Therefore,

LGr(x1, . . . , xn̂) ≤ λ(r) − 3

rr

(ε2
2

)2
< λ(r) − ε,

a contradiction.

Let r ≥ c ≥ 0 be integers. An r-graph G is called a c-star if there exists a set C (called

the center of G) in V (G) of size c such that C ⊂ E for all E ∈ G. Notice that the r-graph Gr

defined above is an (r − 3)-star, and is not an (r − 2)-star if G contains two disjoint egdes.

Lemma 5.4.4. Suppose that the r-graph G is a c-star. Then λ(G) ≤ (r−c)r−c
(r−c)!

1
rr . In particular,

if c = r − 2, then λ(G) ≤ 2/rr.

Proof. Let us assume that the number of vertices of G is n̂ = n+ c and G is a maximal c-star,

i.e. all sets in G contain the set [c]. Let x = x1 + · · ·+ xc. Then

LG(x1, . . . , xn̂) =
∏
i∈[c]

xi
∑

E∈([c+1,n̂]
r−c )

∏
i∈E

xi

≤

(∑
i∈[c] xi

c

)c(
n

r − c

)
1

nr−c

 ∑
i∈[c+1,n̂]

xi

r−c

<
xc(1− x)r−c

(r − c)!cc
≤ 1

(r − c)!cc
(r − c)r−ccc

rr
=

(r − c)r−c

(r − c)!
1

rr
.
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This completes the proof of Lemma 5.4.4

5.4.2 Extremal configurations and the forbidden family

5.4.2.1 Definition

Recall that 3 < k1 < · · · < kt, n1 < · · · < nt are integers satisfying 3 | ni, (ki − 1) | (ni − 1),

and (ki − 1)ki | (ni − 1)ni for i ∈ [t], and

n1

k1 + 1
= · · · = nt

kt + 1
= Q,

where Q is a sufficiently large constant.

For i ∈ [t] the 3-graph Gi has ni vertices and

Gi =

(
V (Gi)

3

)
\ (H(Di) ∪ Si) ,

where Di is an (ni, ki)-design on V (Gi), and Si is a ki/2-regular 3-graph on V (Gi) such that

Si ∩H(Di) = ∅. Also, recall that

λt = λ(G1) = · · · = λ(Gt) =
1

6

(
1− ki + 1

ni

)
=

1

6

(
1− 1

Q

)
.

The family Mt is the union of the following two families:

(a) Mt,1 contains every F ∈
⋃
`≤nt K̂

3
` whose induced subgraph on its core has transversal

number at least two, and F does not occur as a subgraph in any blow-up of G1, . . . ,Gt.
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(b) Mt,2 contains every 3-graph in K3
nt+1 whose induced subgraph on its core has transversal

number at least two.

Our extremal configurations for r-graphs are balanced blow-ups of Gr1 , . . . ,Grt , and the for-

bidden family Mr
t is the union of the following two families:

(a) Mr
t,1 contains every F ∈

⋃
`≤n̂t K̂

r
` that does not occur as a subgraph in any blow-up

of Gri for i ∈ [t], and the induced subgraph of F on its core is nonempty and is not an

(r̂ + 1)-star.

(b) Mr
t,2 contains every F ∈ Krn̂t+1 whose induced subgraph on its core is nonempty and is

not an (r̂ + 1)-star.

Let us identify the vertex set of Gri with [n̂i], where the set [r̂] is the center of Gri . It follows

from Lemma 5.4.3 (a) that,

λ(Gr1) = · · · = λ(Grt ) = λ
(r)
t = 27λt/r

r.

Notice that a 3-graph G that is nonempty and is not a 1-star iff τ(G) ≥ 2, so M3
t = Mt.

Also, note that our definition of Mr
t ensures that every (r̂ + 1)-star is Mr

t -free.

5.4.3 Turán number of Mr
t

We determine the Turán number of Mr
t in this section.

Lemma 5.4.5. An r-graph H is Mr
t -hom-free iff it is Mr

t -free, i.e. Mr
t is blowup-invariant.
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Proof. It is clear thatMr
t -hom-free impliesMr

t -free. So, it suffices to show thatMr
t -free implies

Mr
t -hom-free.

Suppose that H is Mr
t -free. In order to show that H is Mr

t -hom-free it suffices to show

that every blow-up of H is Mr
t -free. Since every blow-up of H can be obtained from H by

duplicating vertices one by one, it suffices to show that duplicating a vertex of H keeps the

Mr
t -free.

Suppose for the contrary that there exists v ∈ V (H) so that the r-graph H′ obtained from

H by duplicating v is notMr
t -free. Let F be a member inMr

t that occurs as a subgraph in H′.

Then V (F ) must contain both of v and the clone v̂ of v. Note that {v, v̂} is not contained in

any edge of H′. Let C denote the core of F and without loss of generality we may assume that

v̂ 6∈ C since otherwise we may replace v̂ by v. Let F ′ = F − v̂ and note that F ′ ⊂ H. Since

LF (v) = LF (v̂), C is 2-covered in F ′ and F [C] = F ′[C].

Let ` = |C|, and note that by definition, F [C] is nonempty and is not an (r′ + 1)-star. If

` = nt + r′ + 1, then by definition, F ′ ∈ Mr
t,2, which contradicts the assumption that H is

Mr
t -free. So, ` ≤ nt + r and hence, F ∈ K̂r

` ∩ Mr
t,1. By definition, F does not occur as a

subgraph in any blow-up of Gri for i ∈ [t]. So, F ′ does not occur as a subgraph in any blow-up

of Gri for i ∈ [t] since F can be obtained from F ′ by duplicating v. So, by the definition ofMr
t,1,

F ′ ∈ K̂r
` ∩Mr

t,1, which contradicts the assumption that H is Mr
t -free.

We also need the following two lemmas about c-stars.

Lemma 5.4.6. Every r-graph that is not a c-star contains a subgraph of size at most r+ 2− c

that is not a c-star.
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Proof. Let H be an r-graph that is not a c-star. Then for every set S ⊂ V (H) of size at least

c there exists an edge E(S) ∈ H such that S 6⊂ E(S).

Fix E ∈ H and assume that E = {v1, . . . , vr}. Since |E| > c, there exists E1 ∈ H such that

E 6⊂ E1, i.e. E 6= E1. Let S1 = E ∩ E1, and without loss of generality we may assume that

S1 = {vi1 , vi1+1, . . . , vr}, where i1 ≥ 2. If |S1| ≤ c − 1, then H = {E,E1} is not a c-star, and

we are done. So we may assume that |S1| ≥ c, Then there exists E2 ∈ H such that S1 6⊂ E2.

Let S2 = S1 ∩E2, and without loss of generality we may assume that S2 = {vi2 , vi2+1, . . . , vr},

where i2 ≥ i1 + 1. Keep doing this until |Sj | ≤ c− 1 for some integer j ≤ r + 2− c. Then the

subgraph H = {E,E1, . . . , Ej} is not a c-star.

Let H(n) be the family of all n-vertex r-graphs that are Gri -colorable for some i ∈ [t] or are

blowups of some (r̂+ 1)-star. The following criteria is useful in determining the structure of an

Mr
t -free r-graph.

Lemma 5.4.7. Suppose that H is a symmetrized F-free r-graph on n vertices. Then either

H is Gri -colourable for some i ∈ [t], or H is a blow-up of an (r̂ + 1)-star. In particular, if,

in addition, |H| > 2nr/rr, then H is Gri -colourable for some i ∈ [t]. In other words, Mr
t is

symmetrized-stable respects to H(n).

Proof. Let T ⊂ V (H) be a set that contains exactly one vertex from each equivalent class of

H, and let T denote the induced subgraph of H on T . Then by assumption, T is 2-covered and

H is a blow-up of T .
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If T is an (r̂+ 1)-star, then H is a blow-up of an (r̂+ 1)-star, and we are done. So, we may

assume that T is not an (r̂ + 1)-star.

Let ` = |T |. If ` ≥ n̂t+1, then by Lemma 5.4.6, there exists F ⊂ T of size at most four such

that F is not an (r̂ + 1)-star. Let C ⊂ T be a set of size n̂t + 1 with V (F ) ⊂ C. By greedily

choosing a set in T \ F to cover each pair of vertices in
(
C
2

)
\ ∂r−2F , it is easy to see that T

contains a subgraph T ′ of size at most
(
n̂t+1

2

)
such that C is 2-covered in T ′. By definition,

T ′ ∈ Mr
t,2, a contradiction. So, ` ≤ n̂t. Then T ∈ K̂r` . Since T 6∈ Mr

t,1, T must occur as a

subgraph in some blow-up of Gri for some i ∈ [t]. Therefore, H is Gri -colourable.

Lemma 5.4.4 implies that an n-vertex (r̂ + 1)-star has at most 2nr/rr edges, so if |H| >

2nr/rr, then H can only be Gri -colourable for some i ∈ [t].

Now we are ready to prove the first part of Theorem 5.1.11.

Proof of Theorem 5.1.11 (a). It follows from Theorem 4.1.4, Lemma 5.4.5, and Lemma 5.4.7

that ex(n,Mr
t ) = max{|H| : H ∈ H(n)}. By Lemma 5.4.4, every n-vertex r-graph that is

a blowup of an (r̂ + 1)-star has size at most 2nr/rr, which is less than M(r)(n). Therefore,

ex(n,M(r)(n)) = M(r)(n).

5.4.4 Stability of Mr
t

Recall that for everyMr
t -free r-graph H on n vertices with |H| ≥ (λ

(r)
t − ε)nr the set Z(H)

is defined as

Z(H) =
{
u ∈ V (H) : dH(u) ≤ (rλ

(r)
t − 2ε1/2)nr−1

}
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It follows from Fact 4.2.1 that |Z(H)| ≤ ε1/2n.

The main result in the section is the following theorem.

Theorem 5.4.8. If ε > 0 is sufficiently small, n is sufficiently large, and H is an Mr
t -free

r-graph on n vertices with |H| ≥ (λ
(r)
t − ε)nr, then the hypergraph H − Z(H) is Gri -colourable

for some i ∈ [t].

The most technical part in the proof of Theorem 5.4.8 is to show the following lemma.

Lemma 5.4.9. There exist ζ > 0 and N0 such that the following holds for all n ≥ N0. Suppose

that H is anMr
t -free r-graph on n vertices with δ(H) ≥ (rλ

(r)
t −ζ)nr−1. If there exists v ∈ V (H)

such that H − v is Gri -colorable for some i ∈ [t], then H is also Gri -colorable, i.e. H is Gri -

extendable for i ∈ [t].

Theorem 5.4.8 is just an easy corollary of Theorem 4.1.7 and Lemma 5.4.9.

5.4.4.1 Preliminaries

Lemma 5.4.10. Let F be an r-graph and S be a 2-covered set in F . Suppose that there exists

a set C ⊂ S of size r̂ and two edges e1, e2 ∈ F [S] with e1 ∩ e2 = S. If ψ : V (F ) → V (Gri )

satisfies ψ(e) ∈ Gri for all e ∈ F , then ψ(C) = [r̂].

Proof. Since S is 2-covered in F , the induced map ψC of ψ on S is a bijection. In particular,

|ψ(C)| = r̂ and ψ(e1)∩ψ(e2) = ψ(C). So, |ψ(e1)∩ψ(e2)| = r̂, and it follows from the property

of Gri that ψ(e1) ∩ ψ(e2) = [r̂]. So, ψ(C) = [r̂].
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Lemma 5.4.11. Let i ∈ [t]. Suppose that W ⊂ V (Gri ) is a set of size at least n̂i −Q/2k2
i and

W contains the center of Gri . Then Gri [W ] does not occur as a subgraph in any blow-up of Grj

for j ∈ [t] \ {i}.

Proof. Without loss of generality we may assume thatW = [m] for some integerm ≥ n̂i−Q/2k2
i .

Let G = Gri [W ], W ′ = W \ [r̂], and G′ be the link of [r̂] in G. It is clear that G′ is a copy of

the induced subgraph of Gi on some vertex set of size |W ′| ≥ ni − Q/2k2
i . Since δ2(Gi) ≥

ni − 3ki/2 > Q/2k2
i , W

′ is 2-covered in G′. So, G is 2-covered. It is clear that G contains two

edges E1, E2 with E1 ∩ E2 = [r̂], so if there exists an embedding ψ : W → [n̂j ] of G into some

Grj with j ∈ [t] \ {i}, then by Lemma 5.4.10, ψ([r̂]) = [r̂]. In other words, the induced map ψW ′

of ψ on W is an embedding of G′ into Gj , which by a result in [173], is impossible.

The following lemma shows that the family Mr
t has a nice inductive property on r.

Lemma 5.4.12. Suppose that H is an Mr
t -free r-graph. Then for every set S ∈ V (H) of size

s ≤ r − 3 the link LH(S) is Mr−s
t -free.

Proof. Suppose for the contrary that there exists a set S ∈ V (H) of size s ≤ r̂ so that LH(S)

is Mr−s
t -free. Let F be a subgraph of LH(S) that is also a member in Mr−s

t . By definition

F ∈
⋃
`≤nt+r′−s K̂

r−s
` ∪ Kr−snt+r′+1−s. Let C denote the core of F and suppose that ` = |C|. Let

F̂ = F + S and Ĉ = C ∪ S. By assumption, F [C] 6= ∅ and it is not an (r′ + 1 − s)-star, so

F̂ [Ĉ] 6= ∅ and it is not an (r′ + 1)-star.

If ` = nt+r′+1−s, then |Ĉ| = nt+r′+1 and hence, F̂ ∈ Kr−snt+r′+1−s. Since H isMr
t,2-free,

by the definition of Mr
t,2, F̂ [Ĉ] must be either an (r′ + 1)-star or empty, a contradiction.
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So, ` ≤ nt + r′ + 1 − s and hence, F ∈ K̂r−s` . Then F̂ ∈ K̂r
`+s with core Ĉ. Since H is

Mr
t,1-free, by the definition of Mr

t,1, F̂ must be Gri -colorable for some i ∈ [t]. Let φ : V (F̂ ) →

V (Gri ) = {u1, . . . , ur′ , v1, . . . , vni} be a Gri -coloring. Since Ĉ is 2-covered in F̂ , φ induced a

bijection φĈ between Ĉ and φ(Ĉ). It follows from F̂ [Ĉ] 6= ∅ that {u1, . . . , ur′} ⊂ φ(Ĉ). Let

wj = φ−1

Ŝ
(uj) for j ∈ [r′]. Then {w1, . . . , wr′} ⊂ e for all e ∈ F̂ [Ĉ]. If S 6⊂ {w1, . . . , wr′},

then the set {w1, . . . , wr′} \ S has size at least r′ + 1 − s and is contained in all e′ ∈ F [S].

This implies that F [C] is an (r′ + 1 − s)-star, a contradiction. So, S ∈ {w1, . . . , wr′}, that is,

φ(S) ∈ {u1, . . . , ur′}. Also, since NF̂ (S) = V (F̂ ) \ S, there is no vertex w ∈ V (F̂ ) \ S with

φ(w) ⊂ φ(S). So, the induced map of φ on V (F ) = V (F̂ ) \S is a Gr−si -coloring of F . However,

this contradicts the assumption that F ∈ K̂r−s
` ∩Mr−s

t .

The following lemma shows that if H is an almost complete subgraph of some blow-up of

G, then it contains every subgraph of G.

Lemma 5.4.13. Fix r ≥ 3, s ≥ 0,m ≥ t ≥ 1, ζ > 0. Let H be an r-graph and V (H) =
⋃
i∈[m] Vi

be a partition. Let G be an r-graph on m vertices and Ĝ = G[V1, . . . , Vm]. Let T ⊂ [m] be a set

of size t and S ⊂ V (H) be a set of size s. Suppose that

(a) |Vj | ≥ (s+ 1)tζ1/rn for all j ∈ T , and

(b) |H[Vj1 , . . . , Vjr ]| ≥ |Ĝ[Vj1 , . . . , Vjr ]| − ζnr for all {j1, . . . , jr} ∈
(
T
r

)
, and

(c) |LH(v)[Vj1 , . . . , Vjr−1 ]| ≥ |LĜ(v)[Vj1 , . . . , Vjr−1 ]| − ζnr−1 for all v ∈ S and {j1, . . . , jr−1} ∈(
T
r−1

)
.
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Then there exist uj ∈ Vj for all j ∈ [T ] so that the set U = {uj : j ∈ T} satisfies

Ĝ[U ] ⊂ H[U ], and LĜ(v)[U ] ⊂ LH(v)[U ], ∀v ∈ S.

In particular, if H ⊂ Ĝ,

Ĝ[U ] = H[U ] and LĜ(v)[U ] = LH(v)[U ] ∀v ∈ S.

Proof. Notice that Ĝ is the blow-up of G on
⋃
i∈[m] Vi, so the size of Ĝ[Vj1 , . . . , Vjr ] is either

0 or
∏
`∈[r] |Vj` | for all {j1, . . . , jr} ∈

(
[m]
r

)
, and the size of LĜ(v)[Vj1 , . . . , Vjr−1 ] is either 0 or∏

`∈[r−1] |Vj` | for all v ∈ V (Ĝ) and {j1, . . . , jr−1} ∈
(

[m]
r−1

)
.

Choose a vertex uj from Vj for j ∈ T uniformly at random, and let U = {uj : j ∈ T}. For

distinct j1, . . . , jr ∈ [m] let Pj1,...,jr denote the probability of uj1 . . . ujr ∈ H under the condition

that uj1 . . . ujr ∈ Ĝ Then by (a) and (b)

Pj1,...,jr =
|H[Vj1 , . . . , Vjr ]|
|Vj1 | · · · |Vjr |

> 1− ζnr

|Vj1 | · · · |Vjr |
> 1− 1

(s+ 1)rtr
.

For v ∈ S and distinct j1, . . . , jr−1 ∈ [m] let Pj1,...,jr−1(v) denote the probability of uj1 . . . ujr−1 ∈

LH(v) under the condition that uj1 . . . ujr−1 ∈ LĜ(v). Then by (a) and (c)

Pj1,...,jr−1(v) =
|LH(v)[Vj1 , . . . , Vjr−1 ]|
|Vj1 | · · · |Vjr−1 |

> 1− ζnr−1

|Vj1 | · · · |Vjr−1 |
> 1− ζ1/r

(s+ 1)r−1t(r − 1)
.
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Let EU denote the event that Ĝ[U ] ⊂ H[U ]. Then by the union bound

P (EU ) > 1−
(
t

r

)
1

(s+ 1)rtr
> 1− 1

r!(s+ 1)r
.

For v ∈ S let Ev denote the event that LĜ(v) ⊂ LH(v). Then by the union bound

P (Ev) > 1−
(

t

r − 1

)
ζ1/r

(s+ 1)(r − 1)t(r − 1)
> 1− ζ1/r

(r − 1)!(s+ 1)(r − 1)
.

So, by the union bound again,

P

(
EU ∧

(∧
v∈S

Ev

))
> 1− 1

r!(s+ 1)r
− s ζ1/r

(r − 1)!(s+ 1)(r − 1)
> 0

Therefore, there exist uj ∈ Vj for j ∈ [T ] so that the set U = {uj : j ∈ T} satisfies Ĝ[U ] ⊂ H[U ]

and LĜ(v)[U ] ⊂ LH(v)[U ] for all v ∈ S.

5.4.4.2 Proof of Lemma 5.4.9

Proof of Lemma 5.4.9. We proceed by induction on r, and the base case is r = 3, which is

already proved in Section 5.3. So, let us assume that Lemma 5.4.9 holds for all r′ < r, and

r ≥ 4.

Let V = V (H), Hv = H − v, and suppose that V \ {v} =
⋃
j∈[n̂] Vj is a Gri -coloring of Hv.

Let Ĝ = Gri [V1, . . . , Vn̂i ] and note that Hv ⊂ Ĝ. For every u ∈ V \ {v} let cap(u) = |LĜ(u)|
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denote the capacity of u and note that |LHv(u)| ≤ cap(u). Call members in LĜ(u) \LHv(u) the

missing edges of LHv(u), and call members in Ĝ \ Hv the missing edges of Hv. Note that

|Hv| ≥ (λ
(r)
t − ζ)nr − nr−1 > (λ

(r)
t − 2ζ)nr,

so the number of missing edges of Hv is at most 2ζnr.

Claim 5.4.14. For every u ∈ V (H) we have

|NH(u)| ≥
(
r − 1

r
− rrζ

)
n.

Proof. Suppose for the contrary that there exists u ∈ V (H) with |NH(u)| <
(
r−1
r − r

rζ
)
n.

By Lemma 5.4.12, LH(u) is an Mr−1
t -free (r − 1)-graph (with vertex set NH(u)), so by Theo-

rem 5.1.11 (a),

|LH(u)| ≤ λ(r−1)
t

(
r − 1

r
− rrζ

)r−1

nr−1

=

(
1− r

r − 1
rrζ

)r−1

λ
(r−1)
t

(
r − 1

r

)r−1

nr−1

≤ (1− rrζ) rλ
(r)
t nr−1 =

(
rλ

(r)
t − rr+1λ

(r)
t ζ
)
nr−1 <

(
rλ

(r)
t − 2ζ

)
nr−1,

which contradicts our assumption that δ(H) ≥ (rλrt − ζ)nr−1.

Let ζ1 = 4rr/2+1ζ1/2. The following claim is an easy corollary of Lemma 5.4.3 and the fact

that |Hv| > (λ
(r)
t − 2ζ)nr.
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Claim 5.4.15.

|Vj | =
n

r
± ζ1n, ∀j ∈ [r̂], and |Vj | =

3n

rni
± ζ1n, ∀j ∈ [r̂ + 1, n̂i].

Claim 5.4.16. cap(u) ≤ (1 + 3rniζ1) rλ
(r)
t nr−1 for all u ∈ V \ {v}.

Proof. By Claim 5.4.15, for every j ∈ [r̂] and u ∈ Vj we have

cap(u) ≤
(n
r

+ ζ1n
)r−4

× λtn3
i

(
3n

rni
+ ζ1n

)3

= (1 + rζ1)r−4
(

1 +
rni
3
ζ1

)3
rλ

(r)
t nr−1

<
(
1 + 2r2ζ1

)
(1 + 2rniζ1) rλ

(r)
t nr−1 < (1 + 3rniζ1) rλ

(r)
t nr−1.

Similarly, for every j ∈ [r̂ + 1, n̂i] and u ∈ Vj we have

cap(u) ≤
(n
r

+ ζ1n
)r−3

× 3λtn
2
i

(
3n

rni
+ ζ1n

)2

= (1 + rζ1)r−3
(

1 +
rni
3
ζ1

)2
rλ

(r)
t nr−1

<
(
1 + 2r2ζ1

)
(1 + 2rniζ1) rλ

(r)
t nr−1 < (1 + 3rniζ1) rλ

(r)
t nr−1.

Since LHv(u) > δ(H) − nr−2 > (rλ
(r)
t − 2ζ)nr−1, by Claim 5.4.16, the number of missing

edges of LHv is at most

2ζnr−1 + 3r2λ
(r)
t niζ1n

r−1 < ζ2n
r−1,
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where ζ2 = 4r2λ
(r)
t niζ1.

For every j ∈ [n̂i] and u ∈ Vj the vertices in
⋃
`∈[n̂i]\{j} V` \ NHv(u) are called the missing

neighbors of u.

Claim 5.4.17. For every u ∈ V \ {v} the number of missing neighbors of u is at most rr−2ζ2n

for all u ∈ V \ {v}.

Proof. If u ∈ Vj for some j ∈ [r̂], then by Claims 5.4.15 and 5.4.14, the number of missing

neighbors of u is at most

n− |Ui| −
(
r − 1

r
− rrζ

)
n ≤ n−

(n
r
− ζ1n

)
−
(
r − 1

r
− rrζ

)
n = (ζ1 + rrζ)n

< rr−2ζ2n.

Now suppose that u ∈ Vj for some j ∈ [r̂ + 1, n̂i]. By Claim 5.4.15, the degree of a vertex

w ∈ V \ Vj in LĜ(u) satisfies

dLĜ(u)(w) > min {
(n
r
− ζ1n

)r−4
3λtn

2
i

(
3n

rni
− ζ1n

)2

,(n
r
− ζ1n

)r−3
δ2(Gi)

(
3n

rni
− ζ1n

)
} > nr−2

rr−2
.

Since the number of missing edges in LHv(u) is at most ζ2n
r−1, the number of vertices with

degree zero in LHv(u) is at most

ζ2n
r−1

nr−2/rr−2
< rr−2ζ2n.
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The following claim shows that every set in LH(v) contains at most one vertex from each

set Vj for j ∈ [n̂i].

Claim 5.4.18. |E ∩ Vj | ≤ 1 for every j ∈ [n̂i] and every E ∈ H that contains v.

Proof. Suppose for the contrary that |E∩Vj | ≥ 2 for some j ∈ [n̂i] and some E ∈ H that contains

v, and without loss of generality we may assume that j = 1 and u1, u
′
1 ∈ E ∩ V1. Applying

Lemma 5.4.13 with T = [n̂i] \ {1} and S = {u1, u
′
1} we obtain uj ∈ Vj for j ∈ [n̂i] \ {1} such

that sets U = {u1, u2, . . . , un̂i} and U ′ = {u′1, u2, . . . , un̂i} satisfy

Hv[U ] = Ĝ[U ] and Hv[U ′] = Ĝ[U ′].

Let G = Hv[U ], G′ = Hv[U ′], and

F = G ∪ G′ ∪ {E}.

It is clear that F ∈ K̂rn̂i+1 with core C = {u1, u
′
1, u2, . . . , un̂i}.

If i = t, then using Lemma 5.4.6, it is easy to see that F contains a subgraph F ∈ Krn̂t+1

with core C, and F ′[C] is nonempty and not an (r̂ + 1)-star. In other words, F ′ ∈ Mr
t,2, a

contradiction.
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Suppose that i < t. Since G ⊂ F and G is a copy of Gri , F does not occur as a subgraph in

any blow-up of Grj for j ∈ [t] \ {i}. On the other hand, since Gri is Krni+1-free, F does not occur

as a subgraph in any blow-up of Gri . So, F ∈ K̂rn̂i+1 ∩Mr
t,1, a contradiction.

To summarize, H and Hv have the following properties.

(a) |Hv[Vj1 , . . . , Vjr ]| > |Ĝ[Vj1 , . . . , Vjr ]| − 2ζnr−1 for all distinct j1, . . . , jr ∈ [n̂i], and

(b) |LHv(u)[Vj1 , . . . , Vjr−1 ]| > |LĜ(u)[Vj1 , . . . , Vjr−1 ]|−ζ2n
r−1 for all distinct j1, . . . , jr−1 ∈ [n̂i],

and

(c) |NHv(u) ∩ Vj | > |NĜ(u) ∩ Vj | − rr−2ζ2n for all j ∈ [n̂i] such that u 6∈ Vj , and

(d) every set in LH(v) has at most one vertex in each set Vj for j ∈ [n̂i].

Define

Sg =
{
j ∈ [n̂i] : |NH(v) ∩ Vj | ≥ n2

i ζ
1/r
2 n

}
,

and let sg = |Sg|.

Claim 5.4.19. There exists j ∈ [n̂i] such that |NH(v) ∩ Vj | < n2
i ζ

1/r
2 n. In other words,

sg ≤ n̂i − 1.

Proof. Let V ′j = NH(v) ∩ Vj and suppose for the contrary that |V ′j | ≥ n2
i ζ

1/r
2 n for all j ∈ [n̂i].

Applying Lemma 5.4.13 with T = [n̂i] and S = ∅, we obtain uj ∈ Vj for j ∈ [n̂i] such that the
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set U = {u1, . . . , un̂i} satisfies Hv[U ] = Ĝ[U ]. For every uj ∈ U let ej ∈ H be an edge that

contains v and uj . Define G = Hv[U ] and

F = G ∪ {ej : j ∈ [n̂i]} .

It is clear that F ∈ K̂rn̂i+1 with core C = U ∪ {v}. Then similar to the proof of Claim 5.4.18,

one can show that either F contains a subgraph F ′ with F ′ ∈ Mr
t,2 (the case i = t) or F ∈

K̂rn̂i+1 ∩Mr
t,1 (the case i < t), both contradict the assumption that H is Mr

t -free.

The next claim shows that in order to finish the proof of Lemma 5.4.9 it suffices to prove

that sg = n̂i − 1.

Claim 5.4.20. Suppose that sg = n̂i − 1 and {i0} = [n̂i] \ Sg. Then NH(v) ∩ Vi0 = ∅ and

LH(v) ⊂ LĜ(u) for u ∈ Vi0. In particular, V =
⋃
j∈[n̂i]

V̂j with V̂i0 = Vi0 ∪ {v} and V̂j = Vj for

j ∈ [n̂i] \ {i0} is a Gri -coloring of H.

Proof. Let V ′j = Vj ∩ NH(v) for j ∈ [n̂i] and without loss of generality we may assume that

i0 = 1. Suppose for the contrary that there exists a vertex u1 ∈ V ′1 . Since |V ′j | ≥ n2
i ζ

1/r
2 n for

j ∈ [n̂i] \ {1}, apply Lemma 5.4.13 with T = [n̂i] \ {1} and S = {u1}, we obtain uj ∈ V ′j for

j ∈ [n̂i] \ {1} such that the set U = {u1, . . . , un̂i} satisfies Hv[U ] = Ĝ[U ]. For every uj ∈ U let

ej ∈ H be an edge that contains v and uj . Define G = Hv[U ] and

F = G ∪ {ej : j ∈ [n̂i]} .
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It is clear that F ∈ K̂rn̂i+1 with core C = U ∪ {v}. Then similar to the proof of Claim 5.4.18,

one can show that either F contains a subgraph F ′ with F ′ ∈ Mr
t,2 (the case i = t) or F ∈

K̂rn̂i+1 ∩Mr
t,1 (the case i < t), both contradict the assumption that H is Mr

t -free. Therefore,

V ′i0 = ∅.

Now let us prove the second part. Suppose for the contrary that there exists ev ∈ LH(v) \

LĜ(u) for u ∈ V1, and without loss of generality we may assume that ev∩Vj = {v̂j} for 2 ≤ j ≤ a

and r̂ + 1 ≤ j ≤ r̂ + b, where a, b ∈ N satisfy a+ b = r.

Define

V ′j =



Vj ∩
(⋂

u∈ev NH(u)
)
, j = 1,

Uj ∩NH(v) ∩
(⋂

u∈ev\{vj}NH(u)
)
, j ∈ [2, a] ∪ [r̂ + 1, r̂ + b],

Uj ∩NH(v) ∩
(⋂

u∈ev NH(u)
)
, otherwise.

Applying Lemma 5.4.13 with T = [n̂i] and S = ∅, we obtain v̂j ∈ V ′j for all j ∈ [û] such that

the set U = {v̂j : j ∈ [û]} satisfies

H[U ] = Ĝ[U ] =: G.

Let Ev = ev ∪ {v}. For every pair (w, ŵ) ∈ Ev × U with {w, ŵ} 6∈ Vj for all j ∈ [n̂i] there

exists ew,ŵ ∈ H such that {w, ŵ} ⊂ ew1,w2 . Define

F = {Ev} ∪ {ew1,w2 : (w, ŵ) ∈ Ev × U, {w, ŵ} 6∈ Vj ,∀j ∈ [n̂i]} ∪ G.
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By Lemma 5.4.11, F does not occur as a subgraph in any blow-up of Grj for all j ∈ [t] \ {i}, so

F is a subgraph in some blow-up of Gri . In other words, there exists ψ : V (F ) → V (Gri ) such

that ψ(e) ∈ Gri for all e ∈ F . Let

Uv = Ev ∪ U \ ({v̂j : j ∈ [a] ∪ [r̂ + 1, r̂ + b]}) .

Since U and Uv are 2-covered in F and |U | = |Uv| = |V (Gri )|, the induced maps ψU and ψUv of

ψ on U and Uv are bijections. Moreover, ψ(v1) = ψ(v) and ψ(v̂j) = ψ(vj) for j ∈ ∪[r̂+ 1, r̂+ b].

It follows from Ev ∈ F that ψ(Ev) ∈ Gri . So,

|Gri | ≥ 1 + |F [U ]| = 1 + |G| = 1 + |Gri |,

a contradiction.

Claim 5.4.21. If |NH(v) ∩ Vj | < n2
i ζ

1/r
2 n for some j ∈ [r̂], then sg = n̂i − 1.

Proof. Suppose for the contrary that sg < n̂i − 2. Then by Claim 5.4.15,

|NH(v)| ≤ (r̂ − 1)
(n
r

+ ζ1n
)

+ (ni − 1)

(
3n

rni
+ ζ1n

)
=
r − 1

r
n− 3n

rni
+ n̂iζ1n <

r − 1

r
n− rrζn,

which contradicts Claim 5.4.14.
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Claims 5.4.20 and 5.4.21 imply that if |NH(v) ∩ Vj | < n2
i ζ

1/r
2 n for some j ∈ [r̂], then we are

done. So we may assume that

|NH(v) ∩ Vj | ≥ n2
i ζ

1/r
2 n, ∀j ∈ [r̂],

and |NH(v) ∩ Vj | < n2
i ζ

1/r
2 n for some j ∈ [r̂ + 1, n̂i].

Let us first show a trivial lower bound for sg.

Claim 5.4.22. sg ≥ 2ni/3.

Proof. Suppose for the contrary that sg < 2ni/3. Then by Claim 5.4.15,

|NH(v)| ≤ r̂
(n
r

+ ζ1n
)

+

(
2ni
3
− 1

)(
3n

rni
+ ζ1n

)
=
r − 1

r
n− 3n

rni
+ n̂iζ1n <

r − 1

r
n− rrζn,

which contradicts Claim 5.4.14.

Recall that Claim 5.4.18 implies that every set E ∈ H containing v has at most one vertex

from each Vj for j ∈ [n̂i]. Our next claim shows that E has exactly one vertex in Vj for every

j ∈ [r̂].

Claim 5.4.23. Every set E ∈ H containing v has exactly one vertex in Vj for j ∈ [r̂].
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Proof. Suppose for the contrary that there exists a set Ev ∈ H containing v such that Ev has

a < r̂ vertices in
⋃
j∈[r̂] Vj . Without loss of generality we may assume that Ev ∩ Vj = {vj} for

j ∈ [a] ∪ [r̂ + 1, r̂ + b], where b = r − 1− a. Let

V ′j =


Vj ∩

(⋂
u∈Ev\{vj}NH(u)

)
, j ∈ [a] ∪ [r̂ + 1, r̂ + b],

Vj ∩
(⋂

u∈Ev NH(u)
)
, otherwise.

Then Claim 5.4.17 implies that

|V ′j | ≥ n2
i ζ

1/r
2 n− (r − 1)× rr−2ζ2n > ni(ni − 1)ζ

1/r
2 n, ∀j ∈ Sg.

Applying Lemma 5.4.13 with T = Sg \ ([a] ∪ [r̂ + 1, r̂ + b]) and S = ∅ we obtain v̂j ∈ V ′j for

all j ∈ Sg such that the set U = {v̂j : j ∈ Sg} satisfies H[U ] = Ĝ[U ]. Let Ĝ = Ĝ[U ] and

F = Ĝ ∪ {Ev} ∪ {ew,ŵ : (w, ŵ) ∈ Ev × U, {w, ŵ} 6∈ Vj ,∀j ∈ [a] ∪ [r̂ + 1, n̂i]} .

It is clear that U is 2-covered in F and F [U ] = Ĝ is not an (r̂+ 1)-star. So, F must occur as a

subgraph in some blow-up of Grj for j ∈ [t]. In other words, there exists ψ : V (F )→ V (Grj ) such

that ψ(e) ∈ Grj for all e ∈ F . Let w` = ψ(v̂`) for ` ∈ [r̂]. Then by Lemma 5.4.10, w1, . . . , wr̂ are
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distinct and the set {w1, . . . , wr̂} is the center of Grj . Since v, vr̂+1, . . . , vr̂+b are adjacent to all

vertices in U , we must have

{ψ(v), ψ(vr̂+1), . . . , ψ(vr̂+b)} ⊂ V (Grj ) \ ψ(U).

In particular, |ψ(Ev) ∩ ψ(E)| ≤ a < r̂ for all E ∈ F , a contradiction.

For every e ∈
∏
j∈[r̂] Vj denote by d(e) the degree of e in LH(v), and denote by Ge the link

of e ∪ {v} in H. Since
∑

e d(e) = |LH(v)| ≥ (rλ
(r)
t − ζ)nr−1, there exists a set e with

d(e) ≥ (rλ
(r)
t − ζ)nr−1(
n
r + ζ1n

)r−3 > (rr−2λ
(r)
t − 2rrζ1)n2 > (3λt − 2rrζ1)

(
3n

r

)2

.

Fix such a set ev. Then we have the following claim.

Claim 5.4.24. The set

N(u) =
{
j ∈ [r̂ + 1, n̂i] : |NGe ∩ Vj | ≥ n2

i ζ
1/r
2 n

}

has size at most ni − ki.
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Proof. Let m = |N(u)| and suppose for the contrary that m > ni − ki. We may assume that

m = ni − ki + 1 since otherwise we can take an (ni − ki + 1)-subset of N(u). Let

V ′j =


Vj ∩NH(v) ∩NH(u), j ∈ [r̂],

Vj ∩NGev (u), j ∈ N(u).

Then by Claim 5.4.17, |V ′j | ≥ n2
i ζ

1/r
2 n− rr−2ζ2n > ni(ni− 1)ζ

1/r
2 n for j ∈ [r̂]∪N(u). Applying

Lemma 5.4.13 with T = [r̂] ∪ N(u) and S = ∅, we obtain uj ∈ Vj for j ∈ T such that the set

U satisfies H[U ] = Ĝ[U ]. Let G = H[U ], ej , e
′
j ∈ H such that {v, uj} ⊂ ej and {u, uj} ⊂ e′j for

j ∈ [r̂], and

F = G ∪ {ej : j ∈ [r̂]} ∪
{
e′j : j ∈ [r̂]

}
∪ {ev ∪ {v, u, uj} : j ∈ N(u)} .

It is clear that F ∈ K̂rm with core U and F [U ] = G is nonempty and not an (r̂ + 1)-star. Since

|U | = r̂+m > n̂i −Q/2k2
i and U contains the center, by Lemma 5.4.11, F does not occur as a

subgraph in any blow-up of Grj for j ∈ [t] \ {i}. So, F is a subgraph in some blow-up of Gri . In

other words, there exists ψ : V (F )→ V (Gri ) such that ψ(e) ∈ Gri for all e ∈ F .

Let wj = uj for j ∈ [r̂]. It is clear that G contains two edges E1, E2 with E1 ∩ E2 =

{u1, . . . , ur̂}, so by Lemma 5.4.10, the set C = {ψ(u1), . . . , ψ(ur̂)} = {w1, . . . , wr̂} is the center

of Gri . Since the set {v, u}∪U is 2-covered in F , ψ(v), ψ(u) 6∈ C and ψ(uj) 6∈ C for all j ∈ N(u).

Therefore, ψ(e) = C and hence ψ (LF (C)) is a subgraph of Gi. However, the pair {u, v} has

degree at least ni − ki + 1 in LF (C) contradicting the fact that ∆2(Gi) = ni − ki.
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Claim 5.4.25. sg = n̂i − 1.

Proof. Suppose for the contrary that sg < n̂i − 1. Then

d(ev) =
1

2

 ∑
u∈Vj :j∈Sg

dGe(u) +
∑

u∈Vj :j 6∈Sg

dGe(u)


≤ 1

2

(
(ni − 2)

(
3n

rni
+ ζ1n

)
+ 2× n2

i ζ
1/r
2 n

)(
(ni − ki)

(
3n

rni
+ ζ1n

)
+ ki × n2

i ζ
1/r
2 n

)
<

1

2

(
(ni − 2)

3n

rni
+ 3n2

i ζ
1/r
2 n

)(
(ni − ki)

3n

rni
+ 2kin

2
i ζ

1/r
2 n

)
<

(ni − 1)(ni − ki)− ki
2n2

i

(
3n

r

)2

− ni − 2ki
2n2

i

(
3n

r

)2

+ 3kin
2
i ζ

1/r
2 n2

< (3λt − 2rrζ1)

(
3n

r

)2

,

a contradiction. Here we used the fact that λt = 1
6

(
1− ki+1

ni

)
= (ni−1)(ni−ki)−ki

6n2
i

.

Claim 5.4.25 completes the proof of Lemma 5.4.9.

5.4.5 Feasible region of Mr
t and ξv(Mr

t )

For i ∈ [t] let Hi(n) be the balanced blowup of Gri on n vertices, and let

xi = lim
n→∞

d (∂Hi(n)) =
(r − 1)!

rr−1

(
(r − 3)rrλ

(r)
t +

9

2

(
1− 1

ni

))
.

By Theorem 5.1.11 (a), {(xi, π(Mr
t )) : i ∈ [t]} ⊂M(Mr

t ). In particular, |M(Mr
t )| ≥ t.

It follows from Theorem 5.1.11 thatMr
t is vertex-t-stable respects to H1(n), . . . ,Ht(n). On

the other hand, it is clear that there exists a constant c > 0 such that every n-vertex r-graph

H that is the balanced blowup of Gri for some i ∈ [t] satisfies δr−1(H) ≥ cn. Therefore, by
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Proposition 5.4.1, |M(Mr
t )| ≤ ξv(Mr

t ) ≤ t. Combined with the conclusion above we obtain

|M(Mr
t )| = ξv(Mr

t ) = t and M(Mr
t ) = {(xi, π(Mr

t )) : i ∈ [t]}.
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6.1 d-cluster-free sets with a given matching number

6.1.1 Introduction

Recall that a d-cluster of k-sets is a collection of d different k-sets A1, ..., Ad such that

|A1 ∪ · · · ∪Ad| ≤ 2k, and |A1 ∩ · · · ∩Ad| = 0.

A family F ⊂
([n]
k

)
is d-cluster-free if it does not contain d-clusters. Note that a family is

intersecting if and only if it is 2-cluster-free. The celebrated Erdős–Ko–Rado theorem [69]

states that if n ≥ 2k and F ⊂
([n]
k

)
is an intersecting family, then |F| ≤

(
n−1
k−1

)
. When n > 2k,

equality holds only if F is a star. In [88], Frankl showed that this theorem still holds for

n ≥ dk/(d− 1) when the intersecting condition is replaced by the d-wise intersecting condition,

i.e. every d sets of F have nonempty intersection.

Theorem 6.1.1 (Frankl [88]). Let k ≥ d ≥ 3 be fixed and n ≥ dk/(d − 1). If F ⊂
([n]
k

)
is a

d-wise intersecting family, then |F| ≤
(
n−1
k−1

)
, with equality only if F is a star.

Later, Frankl and Füredi [97] relaxed the intersection condition and proved that for every

n ≥ k2 + 3k, if F ⊂
([n]
k

)
is 3-cluster-free, then |F| ≤

(
n−1
k−1

)
. Moreover, they conjectured that

the lower bound for n can be improved to 3k/2. In [190], Mubayi settled their conjecture, and

posed the following more general conjecture.

Conjecture 6.1.2 (Mubayi [190]). Let k ≥ d ≥ 3 and n ≥ dk/(d− 1). Suppose that F ⊂
([n]
k

)
is d-cluster-free. Then |F| ≤

(
n−1
k−1

)
, with equality only if F is a star.
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In [197], Mubayi proved Conjecture 6.1.2 for the case d = 4 with n sufficiently large.

Later, Mubayi and Ramadurai [197], and independently, Füredi and Özkahya [111] proved this

conjecture for sufficiently large n. Chen, Liu and Wang [37] proved this conjecture for the case

d = k. In [185], Mammoliti and Britz showed that this conjecture is true for stable families,

i.e. families that are invariant respect to shifting. Very recently, Currier [48] completely solved

Conjecture 6.1.2 by proving the following stronger result.

Theorem 6.1.3 (Currier [48]). Let 2 ≤ d ≤ k ≤ n/2. Furthermore, suppose F∗ ⊂ F ⊂
([n]
k

)
have the property that any d-cluster in F is contained entirely in F∗. Then

|F∗|+ n

k
|F − F∗| ≤

(
n

k

)
.

Furthermore, excepting the case where both d = 2 and n = 2k, equality implies one of the

following:

1. F∗ = ∅ and F is a maximum-sized star.

2. F = F∗ =
([n]
k

)
.

Note that the theorem above indeed implies Conjecture 1.2 since F is d-cluster-free if and

only if F∗ = ∅, and the case dk/(d− 1) ≤ n < 2k has been settled by Theorem 1.1.

In this paper, we focus on a conjecture raised by Mammoliti and Britz. In [185], they

sharpened Conjecture 6.1.2 further by distinguishing the two conditions given by Theorem 6.1.1

and Conjecture 6.1.2, and considered families that are d-cluster-free but that are not d-wise

intersecting. In particular, they posed the following conjecture.
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Conjecture 6.1.4 (Mammoliti–Britz [185]). For k ≥ d ≥ 3 and sufficiently large n every

family F ⊂
([n]
k

)
that is d-cluster-free but that is not intersecting has size at most

(
n−k−1
k−1

)
+ 1,

and equality holds only if F is the disjoint union of a k-set and a star.

Let f(n, k, d, ν) denote the maximum size of a d-cluster-free family F ⊂
([n]
k

)
with a matching

number at least ν+1. Note that by definition f(n, k, d, 0) is the maximum size of a d-cluster-free

k-uniform family, and f(n, k, d, 1) is the maximum size of a k-uniform family that is d-cluster-

free but not intersecting. Conjecture 1.4 says that f(n, k, d, 1) ≤
(
n−k−1
k−1

)
+1 holds for sufficiently

large n.

In this section, we mainly consider the function f(n, k, d, ν) for ν fixed and n sufficiently

large. Let g, h be two functions of n. Then f = o(g) means that limn→∞ f/g = 0. A lower

bound and an upper bound for f(n, k, d, ν) will be given in the remaining part. The lower

bound is given by some constructions, and it is related to the Turán functions on hypergraphs.

On the other hand, the proof of the upper bound is based on a stability theorem proved by

Mubayi in [192]. So, before stating our results formally, first let us give some definitions.

An r-uniform family is also called an r-graph. We use the term r-graph to emphasize that

multiple edges are not allowed in such a hypergraph, and use the term r-multigraph to emphasize

that multiple edges are allowed in such a hypergraph. Suppose that G is an r-multigraph and

E ∈ G is an edge with multiplicity `, then E is counted ` times in e(G). Intuitively, one can

view E as a set with ` different colors c1, ..., c`, and use (E, ci) to represent the edge E with

color ci. Pairs (E, ci), (E, cj) are considered as different edges in G if ci 6= cj .



287

Definition 6.1.5. Let Hev to be the collection of all r-multigraphs on v vertices with e edges.

Let He
v be the collection of r-graphs in Hev. An r-multigraph G is Hev-free if it does not contain

any element in Hev as a subgraph. An r-graph G is He
v -free if it does not contain any element

in He
v as a subgraph.

Let EXr(n,Hev) denote the maximum number of edges in an n-vertex Hev-free r-multigraph.

Let exr(n,He
v) denote the maximum number of edges in an n-vertexHe

v -free r-graph. Sometimes

we omit the superscript r if there is no cause of any ambiguity.

Let n, r, t, λ be integers and n ≥ r ≥ t ≥ 0, λ ≥ 1. A t-(n, r, λ)-design is an r-graph G on

[n] such that for every t-subset T of [n] there are exactly λ members of G containing T . The

existence of certain designs was established by Keevash [136].

For ` ≥ 1 and r ≥ 2 a tight `-path P r` is an r-graph with edge set {vivi+1...vi+r−1 : 1 ≤ i ≤ `}.

Let ex (n, P r` ) denote the maximum number of edges in an n-vertex P r` -free r-graph. Notice that

an r-graph G on [n] is P r2 -free if and only if every (r−1)-subset of [n] is contained in at most one

edge in G. Therefore, we have ex (n, P r2 ) ≤ 1
r

(
n
r−1

)
. On the other hand, by results in [136], for

infinitely many n, an (r−1)-(n, r, 1)-design exists and, hence, we know that ex (n, P r2 ) ≥ 1
r

(
n
r−1

)
holds for infinitely many n.

Now we are ready to state our results formally.

Theorem 6.1.6. There exist two constants c1, c2 that are only related to k, ν and satisfying

max
{

(k − 1)ex
(
ν, P 3

2

)
, 2(k − 1)

⌊ν
2

⌋}
≤ c1 ≤ c2 ≤

k

3

(
ν

2

)
+ (k − 1)ν
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such that

f(n, k, 3, ν) ≥
(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ c1

(
n− kν − 1

k − 4

)
+ ν holds for all n,

and

f(n, k, 3, ν) ≤
(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ (c2 + o(1))

(
n− kν − 1

k − 4

)
+M3

holds for sufficiently large n, where M3 is a constant only related to k, v, and M3 ≤ f(kν, k, 3, ν−

1).

Theorem 6.1.7. There exist two constants c′1, c
′
2 ≥ k

⌊
ν2

4

⌋
such that

f(n, k, 4, ν) ≥
(
n− kν − 1

k − 1

)
+ c′1

(
n− kν − 1

k − 3

)
holds for all n,

and

f(n, k, 4, ν) ≤
(
n− kν − 1

k − 1

)
+ c′2

(
n− kν − 1

k − 3

)
holds for sufficiently large n.

In particular, if ν = 1, then

f(n, k, 4, 1) ≥
(
n− k − 1

k − 1

)
+ ex(n− k − 1, P k−2

2 ) + 1 holds for all n.
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Theorem 6.1.8. Suppose that d ≥ 5. Then

f(n, k, d, ν) ≥
(
n− kν − 1

k − 1

)
+ νEXk−2

(
n− kν − 1,Hd−2

k−1

)
+ ν holds for all n,

and

f(n, k, d, ν) ≤
(
n− kν − 1

k − 1

)
+ (ν + o(1))EXk−2

(
n− kν − 1,Hd−2

k−1

)

holds for sufficiently large n.

For the special case ν = 1, we have the following result.

Theorem 6.1.9. For sufficiently large n, we have

f(n, k, 3, 1) =

(
n− k − 1

k − 1

)
+ 1,

with equality only for the disjoint union of a k-set and a star.

Theorem 6.1.9 shows that Conjecture 6.1.4 is true for d = 3. However, Theorems 6.1.7

and 6.1.7 imply that Conjecture 6.1.4 is false for d ≥ 4.

Note that in [185] Mammoliti and Britz also asked for the maximum size of a k-uniform

family that is d-cluster-free but that is not d-wise intersecting. Let g(n, k, d, t) denote the

maximum size of a k-uniform family F on [n] that is d-cluster-free but not t-wise intersecting.

i.e. for all distinct sets A1, ..., Ad ∈ F , we have A1 ∩ ... ∩Ad 6= ∅ whenever |A1 ∪ ... ∪Ad| ≤ 2k,

but there exist t sets A′1, ..., A
′
t ∈ F such that A′1 ∩ ... ∩ A′t = ∅. Later, it will be shown that
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a family F that is d-cluster-free but not t-wise intersecting and of large size is actually not

intersecting. Therefore, we have the following result.

Theorem 6.1.10. The equation g(n, k, d, t) = f(n, k, d, 1) holds for sufficiently large n.

6.1.2 Preliminaries

For r-graphs, it is well known that the Turán density π (He
v) = limn→∞ ex (n,He

v) /
(
n
r

)
exists, and have the Supersaturation Lemma. A similar result is also true for r-multigraphs.

Lemma 6.1.11. The limit limn→∞ EXr (n,Hev) /
(
n
r

)
exists.

Proof. Let G be an n-vertex Hev-free r-multigraph with EX(n,Hev) edges. Choose an (n − 1)-

subset S of V (G) uniformly at random. For every edge E ∈ G, the probability that E is

contained in S is (n − r)/n. So, the expected number of edges in S is ((n− r)/n) EX(n,Hev).

Therefore, there exists a set S of size n− 1 with at least ((n− r)/n) EX(n,Hev) edges in G[S].

Since G[S] is also Hev-free, we therefore have that ((n− r)/n) EX(n,Hev) ≤ EX(n − 1,Hev). It

follows that

EX(n,Hev)(
n
r

) ≤ EX(n− 1,Hev)(
n−1
r

) .

So EX(n,Hev)/
(
n
r

)
is non-increasing respect to n, and this implies the existence of the limit

limn→∞ EXr(n,Hev)/
(
n
r

)
.

Define the Turán density Π (Hev) of Hev as Π (Hev) = limn→∞ EXr (n,Hev) /
(
n
r

)
. Notice that

in the proof of Lemma 6.1.11, we showed that EXr (n,Hev) /
(
n
r

)
is non-increasing respect to n.

Therefore, we have EXr (n,Hev) ≤
(
EXr (v,Hev) /

(
v
r

)) (
n
r

)
<
(
e/
(
v
r

)) (
n
r

)
. On the other hand,

since every He
v -free r-graph is also an Hev-free r-multigraph, we have EXr(n,Hev) ≥ exr(n,He

v).
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Lemma 6.1.12 (Supersaturation). For any Hev and any a > 0, there exist b > 0 and n0 such

that any r-multigraph G on n > n0 vertices with at least (Π(Hev) + a)
(
n
r

)
edges contains at least

b
(
n
v

)
copies of elements in Hev. Moreover, we have b ≥ (a/2)/

(
M
v

)
, where M is the smallest

integer satisfying both M ≥ max{r, v} and EX (M,Hev) ≤ (Π(Hev) + a/2)
(
M
r

)
.

Let F ⊂
([n]
k

)
and x ∈ [n], define F(x) = {F ∈ F : x ∈ F} and F(x̄) = {F ∈ F : x 6∈ F}.

The following stability theorem for d-cluster-free families is an important tool in our proofs.

Theorem 6.1.13 (Stability, [192]). Fix 2 ≤ d ≤ k. For every δ > 0, there exists ε > 0 and n0

such that the following holds for all n > n0. Suppose that F ⊂
([n]
k

)
is a d-cluster-free family.

If |F| ≥ (1− ε)
(
n−1
k−1

)
, then there exists a vertex x ∈ [n] such that |F(x̄)| < δ

(
n−1
k−1

)
.

Now let F be a d-cluster-free family with a matching number at least ν+1 and of size exactly

f(n, k, d, ν). In order to apply Theorem 6.1.13 to F , we need a lower bound for f(n, k, d, ν). So,

let us give a simple construction of a d-cluster-free family Sν with a matching number exactly

ν + 1.

Fix a vertex y ∈ [n], and choose ν disjoint sets C1, ..., Cν from
([n]−y

k

)
. Let J =

⋃ν
i=1Ci and

W = [n]− y − J . Let

Sν =

{
{y} ∪A : A ∈

(
W

k − 1

)}
∪ {C1, ..., Cν}.

Note that the size of Sν is
(
n−kν−1
k−1

)
+ ν. Therefore, we have f(n, k, d, ν) ≥

(
n−kν−1
k−1

)
+ ν.

For fixed ν and k we have limn→∞
(
n−kν−1
k−1

)
/
(
n−1
k−1

)
= 1. Choose δ > 0 to be sufficiently

small, which will be determined later in the proof of Lemma 6.1.16, and let ε, n0 be given by
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Theorem 6.1.13. Let n be sufficiently large so that n > n0 and
(
n−kν−1
k−1

)
> (1 − ε)

(
n−1
k−1

)
. By

Theorem 6.1.13, there exists a vertex x ∈ [n] such that |F(x̄)| < δ
(
n−1
k−1

)
. Since F contains

at least ν + 1 pairwise disjoint sets, we know that F(x̄) contains at least ν pairwise disjoint

sets. So we can choose ν pairwise disjoint sets B1, ..., Bν from F(x̄). Let I =
⋃ν
i=1Bi and

U = [n]−x−I. Let m = |F(x̄)| and note that m < δ
(
n−1
k−1

)
. Actually, the following lemmas will

show that if m ≥ c
(
n−1
k−2

)
holds for some absolute constant c > 0, then there exists a d-cluster

in F , which contradicts our assumption.

Lemma 6.1.14 ([197]). Fix 2 ≤ d ≤ k, 1 ≤ p ≤ k, and k < u1 ≤ n/2 with n sufficiently large.

Suppose that [n] has a partition U1 ∪U2, u1 = |U1|, u2 = |U2| and F is a collection of k-sets of

[n] such that |F ∩ U1| = p for every F ∈ F . If F contains no d-cluster, then |F| ≤ kup−1
1 uk−p2 .

The original form of the next lemma is Claim 1 in [192]. Note that it is assumed in the proof

of Claim 1 that the size of F is at least
(
n−1
k−1

)
. However, in our proof, we can only assume that

|F| ≥
(
n−kν−1
k−1

)
+ ν. So we add an extra assumption that m ≥ c

(
n−1
k−2

)
holds for some constant

c > 0 in the next lemma, and the conclusion is also sightly different from that in Claim 1.

Lemma 6.1.15. Suppose that m ≥ c
(
n−1
k−2

)
holds for some constant c > 0. Then, there are

pairwise disjoint (k − 2)-sets S1, S2, S3 ⊂ [n]− x such that for each i

dF(x)(Si) := |{y ∈ [n] : {x, y} ∪ Si ∈ F}| ≥ n− k + 1−
(
k2/c+ 2k

)
m(

n−1
k−2

) .

The proof of the next lemma appeared in [197] as a part of the proof of its main theorem.

For completeness, we state it formally as a lemma and include its proof in Appendix A.
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Lemma 6.1.16 ([197]). Suppose that m ≥ c
(
n−1
k−2

)
holds for some constant c > 0. Then, there

is a d-cluster in F .

Before presenting our proofs, we would like to remaind the reader that in the proof of the

upper bound for f(n, k, d, ν), we always assume that n is sufficiently large. Our constructions

are obtained from Sν by adding some extra k-sets. We will continue using the notations y, J,W

and C1, ..., Cν in the lower bound parts, and continue using the notations x, I, U and B1, ..., Bν

in the upper bound parts.

6.1.3 Proofs of Theorems 6.1.6 and 6.1.9

The proof of Theorem 6.1.6 is consisting of two parts. In the first part, we present two

constructions to give two lower bounds for f(n, k, 3, ν). In the second part, we prove the upper

bound for f(n, k, 3, ν).

6.1.3.1 Lower Bound

Recall that the family Sν is the disjoint union of a star and ν pairwise disjoint k-sets

C1, ..., Cν .

First construction for d = 3.

Choose one vertex vi from each set Ci. For every ` ∈ {1, . . . , bν/2c} let P` = C2`−1 ∪ C2`. For

every i ∈ {2, . . . , k − 1} define

Gi =

A ∈
bν/2c⋃
`=1

(
P`
i

)
: {v2`−1, v2`} ⊂ A for some `

 .
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Let

L1 = Sν ∪

(
k−1⋃
i=2

{
{y} ∪A ∪B : B ∈

(
W

k − 1− i

)
and A ∈ Gi

})
.

Note that the size of Gi is
⌊
ν
2

⌋ (
2k−2
i−2

)
for all i ∈ {2, ..., k − 1}. Therefore, we have

|L1| =
(
n− kν − 1

k − 1

)
+

k−1∑
i=2

⌊ν
2

⌋(2k − 2

i− 2

)(
n− kν − 1

k − 1− i

)
+ ν.

Since L1 is a 3-cluster-free family with ν(L1) = ν + 1, we therefore have that

f(n, k, 3, ν) ≥
(
n− kν − 1

k − 1

)
+
k−1∑
i=2

⌊ν
2

⌋(2k − 2

i− 2

)(
n− kν − 1

k − 1− i

)
+ ν.

Second construction for d = 3.

Suppose that Ci = {ci1, . . . , cik} for 1 ≤ i ≤ ν. Then let Vj = {c1
j , . . . , c

ν
j } for every j ∈ [k]. Let

G1 be the graph on V1 with edge set
{
{c2i−1

1 , c2i
1 } : 1 ≤ i ≤ bν/2c

}
. For every j ∈ {2, . . . , k} let

Gj be a P 3
2 -free 3-graph on Vj with exactly ex(ν, P 3

2 ) edges. Let

L′2 = Sν ∪
{
{y} ∪A ∪B : B ∈

(
W

k − 3

)
and A ∈ E(G1)

}
.

Then let

L2 = L′2 ∪

 k⋃
j=2

{
{y} ∪A ∪B : B ∈

(
W

k − 4

)
and A ∈ Gj

} .
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It is easy to see that

|L2| =
(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ (k − 1)ex(ν, P 3

2 )

(
n− kν − 1

k − 4

)
+ ν.

Since L2 is a 3-cluster-free family with ν(L2) = ν + 1, we therefore have that

f(n, k, 3, ν) ≥
(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ (k − 1)ex(ν, P 3

2 )

(
n− kν − 1

k − 4

)
+ ν.

6.1.3.2 Upper Bound

First we claim that |F ∩F ′| ≤ k−2 holds for every F ∈ F(x) and every F ′ ∈ F(x̄). Indeed,

suppose that there exists an edge F ∈ F(x) and an edge F ′ ∈ F(x̄) such that |F ∩F ′| = k− 1.

Then for every set S ∈
([n]−x−F ′

k−1

)
we have {x}∪S 6∈ F , since otherwise {x}∪S, F and F ′ would

form a 3-cluster, a contradiction. So in this case we would have

|F| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ δ

(
n− 1

k − 1

)
<

(
n− kν − 1

k − 1

)
,

and this contradicts our assumption that F is of size f(n, k, 3, ν).

Let M3 be the maximum possible number of sets in F that are completely contained in I,

and it is easy to see that M3 ≤ f(kν, k, 3, ν − 1). For every subset C of U that of size at most

k − 2 let

F ′(C) = {F − x− C : F ∈ F(x) and F ∩ U = C} ,
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and let F(C) = F ′(C)−
⋃ν
i=1

(
Bi

k−1−|C|
)
. For every j ∈ {0, . . . , k − 1} let

Fj = {F ∈ F(x) : |F ∩ I| = j} .

Intuitively, one can view F ′(C) as the collection of neighbors of C in I, and view |F ′(C)|

as the degree of C in F(x). Our goal is to give an upper bound for |F(x)|, and this is done by

giving an upper bound for each |F ′(C)|.

Lemma 6.1.17. Let C ∈
(
U
k−3

)
. Then |F(C)| ≤

⌊
ν
2

⌋
.

Proof. Let C ∈
(
U
k−3

)
and let G denote the graph F(C). Note that G is a graph on I. By the

definition of F(C), we know that Bi is an independent set in G for 1 ≤ i ≤ ν.

For every pair {i, j} ⊂ {1, . . . , ν} let E(Bi, Bj) denote the collection of edges in G that have

one endpoint in Bi and the other endpoint in Bj , and let e(Bi, Bj) denote the size of E(Bi, Bj).

First, we claim that e(Bi, Bj) ≤ 1 for every pair {i, j} ⊂ {1, . . . , ν}. Indeed, suppose that

there are two edges e1, e2 ∈ E(Bi, Bj) for some pair {i, j}. Assume that e1 = {bi1, b
j
1}, e2 =

{bi2, b
j
2} and bi1, b

i
2 ∈ Bi, b

j
1, b

j
2 ∈ Bj . We may assume that bi1 6= bi2, otherwise we consider

bj1 and bj2 instead. However, the three sets Bi, {x, bi1, b
j
1}∪C and {x, bi2, b

j
2}∪C form a 3-cluster,

a contradiction. Therefore, we have e(Bi, Bj) ≤ 1. Next, we show that for every i ∈ {1, . . . , ν}

there is at most one edge that has nonempty intersection with Bi. Indeed, suppose there are

two edges e1, e2 such that e1 ∩Bi 6= ∅ and e2 ∩Bi 6= ∅. Assume that e1 = {bi1, b
j
1}, e2 = {bi2, bk2}

and bi1, b
i
2 ∈ Bi, b

j
1 ∈ Bj , bk2 ∈ Bk. By the argument above, we know that j 6= k. However, if

bi1 6= bi2, then Bi, {x, bi1, b
j
1} ∪C and {x, bi2, bk2} ∪C form a 3-cluster, a contradiction. If bi1 = bi2,
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then Bj , {x, bi1, b
j
1} ∪ C and {x, bi2, bk2} ∪ C form a 3-cluster, a contradiction. So every Bi has

nonempty intersection with at most one edge of G. Therefore, we have |F(C)| = e(G) ≤ bν/2c.

Assume that k ≥ 4. Let C ∈
(
U
k−4

)
and view F(C) as a 3-graph on I. By the definition of

F(C), every E ∈ F(C) has nonempty intersection with at least two sets in {B1, . . . , Bν}. We

call E a long edge if E has nonempty intersection with three sets in {B1, . . . , Bν}, otherwise

we call E a short edge. Let Lc be the collection of all long edges in F(C) and let Sc be the

collection of all short edges in F(C). For every i ∈ [ν] let Gi be the graph on Bi with edge set

∂Sc ∩
(
Bi
2

)
. For every pair {i, j} ⊂ [ν] let Gi,j be the bipartite graph on Bi ∪ Bj with edge set

∂Lc ∩
(Bi∪Bj

2

)
.

Claim 6.1.18. The matching number of Gi is at most one for every i ∈ [ν].

Proof. Suppose there are two vertex disjoint edges e1, e2 in E(Gi) for some i ∈ [ν]. By the

definition of E(Gi), there exist two sets S1, S2 ∈ Sc such that S1 ∩ Bi = e1 and S2 ∩ Bi = e2.

However, the three sets Bi, {x}∪C∪S1 and {x}∪C∪S2 form a 3-cluster in F , a contradiction.

Therefore, the matching number of Gi is at most one.

Claim 6.1.19. For every i ∈ [ν] and every e ∈ E(Gi) there is exactly one set S ∈ Sc such that

S ∩Bi = e.

Proof. Suppose that there exist two vertices v1 ∈ Bj and v2 ∈ Bk for some j, k such that

S1 = {v1} ∪ e and S2 = {v2} ∪ e are both contained in Sc. Here j 6= i and k 6= i but j, k might
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be the same. However, the three sets Bj , {x} ∪C ∪ S1 and {x} ∪C ∪ S2 form a 3-cluster in F ,

a contradiction. Therefore, there is exactly one set S ∈ Sc such that S ∩Bi = e.

Claim 6.1.18 implies that the size of E(Gi) is at most k − 1 for every i ∈ [ν]. Combining

Claim 6.1.18 with Claim 6.1.19, we obtain that |Sc| =
∑ν

i=1 |E(Gi)| ≤ (k − 1)v. Next, we will

give an upper bound for |Lc|.

Claim 6.1.20. For every pair {i, j} ⊂ [ν] every vertex in Gi,j has degree at most 1.

Proof. Suppose that there exist two edges e1, e2 ∈ E(Gi,j) for some pair {i, j} ⊂ [ν] such that

e1 ∩ e2 6= ∅. Without loss of generality, we may assume that the common endpoint of e1, e2

lies in Bi. By the definition of Gi,j , there exist two sets S1, S2 ∈ Lc such that e1 ⊂ S1 and

e2 ⊂ S2. However, the three sets Bj , {x} ∪ C ∪ S1 and {x} ∪ C ∪ S2 form a 3-cluster in F , a

contradiction. Therefore, every vertex in Gi,j has degree at most 1.

Claim 6.1.21. For every e ∈ E(Gi,j) there is exactly one set S ∈ Lc containing e.

Proof. Suppose there exist two vertices v1 ∈ Bk and v2 ∈ B` such that S1 = {v1} ∪ e and

S2 = {v2}∪ e are both contained in Lc. Here k, ` 6∈ {i, j} but k, ` might be the same. However,

Bk, {x} ∪ C ∪ S1 and {x} ∪ C ∪ S2 form a 3-cluster in F , a contradiction. Therefore, there is

exactly one set in Lc that contains e.

Claim 6.1.20 implies that |E(Gi,j)| ≤ k for every pair {i, j} ⊂ [ν]. Combining Claim 6.1.20

with Claim 6.1.21, we obtain that |Lc| = 1
3

∑
1≤i<j≤ν |E(Gi,j)| ≤ k

3

(
ν
2

)
. Since |F(C)| = |Sc| +

|Lc|, we therefore obtain the following lemma.
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Lemma 6.1.22. Suppose that k ≥ 4 and C ∈
(
U
k−4

)
. Then |F(C)| ≤ k

3

(
ν
2

)
+ (k − 1)v.

Now we are ready to prove the upper bound for Theorem 6.1.6.

Proof of Theorem 6.1.6. Case 1: the family F(x̄) is completely contained in
(
I
k

)
.

For every j ∈ [k − 2] define Bj =
⋃ν
i=1

(
Bi
j

)
, and let

Gj =

{
A ∈

(
U

j

)
: ∃B ∈ Bk−1−j such that {x} ∪A ∪B ∈ F

}
.

Let S ∈
(
U
k−1

)
, we say that S is bad if it contains an edge E ∈ Gj for some j ∈ [k − 2]. Note

that if S is bad, then {x} ∪ S 6∈ F , since otherwise there would be a set B contained in Bi for

some i such that F = {x}∪E ∪B is contained in F . However, the three sets Bi, F and {x}∪S

form a 3-cluster in F , a contradiction.

For every j ∈ [k − 2] let gj denote the size of Gj . Let β denote the number of bad sets in(
U
k−1

)
. Let E ∈ Gj . Then for every A ∈

(
U−E
k−1−j

)
, we know that A ∪ E is a bad set in

(
U
k−1

)
.

Therefore, we have β ≥ 1
22k

∑k−2
i=1 gi

( |U |−i
k−1−i

)
.

For every j ∈ [k − 1], we have |Fj | ≤
(|I|
j

)( |U |
k−1−j

)
. Therefore, we obtain

∑k−1
j=4 |Fj | =

o(1)
( |U |
k−4

)
. Let c′ = k

3

(
ν
2

)
+ (k − 1)ν, by Lemmas 6.1.17 and 6.1.22, we have

|F| =
k−1∑
i=0

|Fi|+ |F(x̄)|

≤
(
|U |
k − 1

)
− β + 2kν

k−2∑
i=1

gi +
⌊ν

2

⌋( |U |
k − 3

)
+ (c′ + o(1))

(
|U |
k − 4

)
+M3.



300

For every j ∈ [k − 2], we have 1
22k

( |U |−i
k−1−j

)
> 2kν. Therefore, we have −β + 2kν

∑k−2
i=1 gi ≤ 0

and, hence, we obtain

|F| ≤
(
|U |
k − 1

)
+
⌊ν

2

⌋( |U |
k − 3

)
+ (c′ + o(1))

(
|U |
k − 4

)
+M3

=

(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ (c′ + o(1))

(
n− kν − 1

k − 4

)
+M3.

Case 2: the family F(x̄) is not completely contained in
(
I
k

)
.

Then there exists a set Bν+1 ∈ F(x̄) such that Bν+1 − I 6= ∅. Now let I ′ = I ∪ Bν+1 and

U ′ = [n]− x− I ′. Let

G =

{
E ∈

(
U ′

k − 2

)
: ∃b ∈ I ′ such that {x, b} ∪ E ∈ F

}
.

Let S ∈
(
U ′

k−1

)
, we say that S is bad if it contains an edge E ∈ G. Note that if S is bad, then

{x} ∪ S 6∈ F , since otherwise there would be a vertex b contained in Bi for some i such that

{x, b} ∪ E ∈ F . However, the three sets Bi, {x, b} ∪ E and {x} ∪ S form a 3-cluster in F , a

contradiction.

Let g denote the size of G and let β denote the number of bad sets in
(
U ′

k−1

)
. Let E ∈ G.

Then for every v ∈ U ′−E, we know that {v}∪E is a bad set in
(
U ′

k−1

)
. So we have β ≥ |U

′|−k+2
k−1 g.
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Let F≥2 = {F ∈ F(x) : |F ∩ I ′| ≥ 2}, and note that |F≥2| ≤
∑k−1

i=2

(|I′|
i

)( |U ′|
k−1−i

)
< 1

2

( |U ′|
k−2

)
.

Therefore, we have

|F| = |F(x)|+ |F(x̄)| ≤
(
|U ′|
k − 1

)
− β + g|I ′|+ 1

2

(
|U ′|
k − 2

)
+m

≤
(
|U ′|
k − 1

)
−
(
|U ′| − k + 2

k − 1
− |I ′|

)
g +

1

2

(
|U ′|
k − 2

)
+m.

Since |U
′|−k+2
k−1 > |I ′| and |U ′| ≤ n− kν − 2, we therefore have that

|F| ≤
(
n− kν − 2

k − 1

)
+

1

2

(
n− kν − 2

k − 2

)
+m =

(
n− kν − 1

k − 1

)
− 1

2

(
n− kν − 2

k − 2

)
+m.

By the assumption that |F| = f(n, k, 3, ν), we obtain m ≥ 1
2

(
n−kν−2
k−2

)
≥ 1

4

(
n−1
k−2

)
. However, Lem-

ma 6.1.16 implies that F contains a 3-cluster, a contradiction. Therefore, Case 2 is impossible

and, hence, we obtain

f(n, k, 3, ν) ≤
(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ (c′ + o(1))

(
n− kν − 1

k − 4

)
+M3.

6.1.3.3 Proof of Theorem 6.1.9

Proof of Theorem 6.1.9. Let C be a subset of U that of size at most k − 2. Since ν = 1, every

set in F ′(C) is contained in B1 and, hence, we have F(C) = ∅. Note that in the argument
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above, we already showed that Case 2 is impossible. Therefore, it suffices to only consider Case

1 and, hence, we obtain

f(n, k, 3, 1) = |F| ≤
(
|U |
k − 1

)
− β + 2k

k−2∑
i=1

gi + 1 ≤
(
n− k − 1

k − 1

)
+ 1,

and equality holds only if gi = 0 holds for every i ∈ [k − 2], i.e., F is the disjoint union of a

k-set and a star.

6.1.4 Proof of Theorem 6.1.7

6.1.4.1 Lower Bound

A construction for ν = 1.

Let k′ = k − 2 and n′ = n− kν − 1 for short. Let G be a P k
′

2 -free k′-graph on W with exactly

ex(n′, P k
′

2 ) edges. Let v ∈ J be fixed and define

L3 = Sν ∪ {{y, v} ∪A : A ∈ G} .

It is easy to see that

|L3| =
(
n− k − 1

k − 1

)
+ ex(n′, P k

′
2 ) + 1.

Since L3 is 4-cluster-free and ν(L3) = 2, we therefore have

f(n, k, 4, 1) ≥
(
n− k − 1

k − 1

)
+ ex(n′, P k

′
2 ) + 1.
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A construction for ν ≥ 2.

Let C` = {C1, . . . , Cbν/2c} and Cr = {Cbν/2c+1, . . . , Cν}. For every pair (Ci, Cj) with Ci ∈ C`

and Cj ∈ Cr add k vertex disjoint edges between Ci and Cj , and let G denote the resulting

graph. Note that the number of edges in G is k
⌊
ν2/4

⌋
. Let

L4 = Sν ∪
{
{y} ∪ e ∪B : B ∈

(
W

k − 3

)
and e ∈ E(G)

}
.

Then, it is easy to see that

|L4| =
(
n− kν − 1

k − 1

)
+ k

⌊
ν2

4

⌋(
n− kν − 1

k − 3

)
+ ν.

Since L4 is 4-cluster-free and ν(L4) = ν + 1, we therefore have that

f(n, k, 4, ν) ≥
(
n− kν − 1

k − 1

)
+ k

⌊
ν2

4

⌋(
n− kν − 1

k − 3

)
+ ν.

6.1.5 Upper Bound

Let M4 be the maximum possible number of sets in F that are completely contained in I,

and it is easy to see that M4 ≤ f(kν, k, 4, ν − 1).

Proof of Theorem 6.1.7. Case 1: the family F(x̄) is completely contained in
(
I
k

)
.

For every i ∈ [ν] let

Gi =

{
A ∈

(
U

k − 2

)
: ∃b ∈ Bi such that {x, b} ∪A ∈ F

}
,
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and let gi denote the size of Gi. Without loss of generality, we may assume that g1 ≥ · · · ≥ gν .

Let P2 be the collection of all tight 2-paths in G1. Then we have

|P2| =
∑

E∈( U
k−3)

(
dG1(E)

2

)
≥
(
|U |
k − 3

)(∑
dG1(E)/

( |U |
k−3

)
2

)
=

(k − 2)g1

2

(
(k − 2)g1( |U |

k−3

) − 1

)
.

Let S ∈
(
U
k−1

)
, we say that S is bad if it contains at least two sets E1, E2 ∈ Gi for some

i. Note that if S is bad, then {x} ∪ S 6∈ F , since otherwise there would be two vertices

b1, b2 ∈ Bi such that {x, b1} ∪E1, {x, b2} ∪E2 are both contained in F . However, the four sets

Bi, {x} ∪ S, {x, b1} ∪ E1 and {x, b2} ∪ E2 form a 4-cluster in F , a contradiction.

Let β denote the number of bad sets. Since every tight 2-path in G1 forms a bad set, we

have β ≥ g1
k−1

(
(k − 2)g1/

( |U |
k−3

)
− 1
)

.

Let F≥2 = {F ∈ F(x) : |F ∩ I| ≥ 2}. Then there exists a constant c such that |F≥2| ≤∑k−1
i=2

(|I|
i

)( |U |
k−1−i

)
≤ c
( |U |
k−3

)
.

For every E ∈ Gi there are at most two vertices b1, b2 in Bi such that {x, b1}∪E, {x, b2}∪E ∈

F . Indeed, suppose there are three vertices b1, b2, b3 ∈ Bi such that {x, b1} ∪ E, {x, b2} ∪

E, {x, b3}∪E are all contained in F . Then the four sets {x, b1}∪E, {x, b2}∪E, {x, b3}∪E and

Bi would form a 4-cluster in F , a contradiction. Therefore, we have

|F| = |F(x)|+ |F(x̄)| ≤
(
|U |
k − 1

)
− β +

ν∑
i=1

2gi + c

(
|U |
k − 3

)
+M4

≤
(
n− kν − 1

k − 1

)
+ 2νg1 −

g1

k − 1

(
(k − 2)g1( |U |

k−3

) − 1

)
+ c

(
n− kν − 1

k − 3

)
+M4.
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Viewing g1 as a variable to obtain that 2νg1 − g1
k−1

(
(k − 2)g1/

( |U |
k−3

)
− 1
)
≤ (2ν(k−1)+1)2

4(k−1)(k−2)

( |U |
k−3

)
.

Since (2ν(k−1)+1)2

4(k−1)(k−2) is a constant only related to k and ν, we obtain that

|F| ≤
(
n− kν − 1

k − 1

)
+ c′2

(
n− kν − 1

k − 3

)
+M4,

where c′2 is a constant only related to k and ν.

Case 2: the family F(x̄) is not completely contained in
(
I
k

)
.

Then there exists a set Bν+1 ∈ F(x̄) such that Bν+1 − I 6= ∅. Now let I ′ = I ∪ Bν+1 and

U ′ = [n]− x− I ′. For every i ∈ [ν + 1] let

Gi =

{
A ∈

(
U ′

k − 2

)
: ∃b ∈ Bi such that {x, b} ∪A ∈ F

}
,

and let gi denote the size of Gi. We may assume that g1 ≥ · · · ≥ gν+1. Let P2 be the collection

of all tight 2-paths in G1. Then |P2| ≥ (k−2)g1
2

(
(k − 2)g1/

( |U ′|
k−3

)
− 1
)

.

Let S ∈
(
U ′

k−1

)
, we say that S is bad if S contains two edges E1, E2 in Gi for some i. Note

that if S is bad, then {x} ∪ S 6∈ F . Let β denote the number of bad sets in
(
U ′

k−1

)
. Since every

tight 2-path in G1 forms a bad set, we have β ≥ g1
k−1

(
(k − 2)g1/

( |U ′|
k−3

)
− 1
)

.
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Let F≥2 = {F ∈ F(x) : |F ∩ I ′| ≥ 2} and note that there exists a constant c such that

|F≥2| ≤
∑k−1

i=2

(|I′|
i

)( |U ′|
k−1−i

)
≤ c
( |U ′|
k−3

)
. Therefore, we have

|F| ≤
(
|U ′|
k − 1

)
− β +

ν+1∑
i=1

2gi + c

(
|U ′|
k − 3

)
+m

≤
(
|U ′|
k − 1

)
+ 2(ν + 1)g1 −

g1

k − 1

(
(k − 2)g1( |U ′|

k−3

) − 1

)
+ c

(
|U ′|
k − 3

)
+m.

Since 2(ν + 1)g1− g1
k−1

(
(k − 2)g1/

( |U ′|
k−3

)
− 1
)
≤ (2(ν+1)(k−1)+1)2

4(k−1)(k−2)

( |U ′|
k−3

)
, there exists a constant c′

such that

|F| ≤
(
|U ′|
k − 1

)
+ c′

(
|U ′|
k − 3

)
+m ≤

(
n− kν − 1

k − 1

)
−
(
n− kν − 2

k − 2

)
+ c′

(
n− kν − 2

k − 3

)
+m.

By the assumption that |F| = f(n, k, 4, ν), we have m >
(
n−kν−2
k−2

)
− c′

(
n−kν−2
k−3

)
≥ 1

2

(
n−1
k−2

)
.

However, Lemma 6.1.16 implies that F contains a 4-cluster, a contradiction. Therefore, Case

2 is impossible and, hence, there exists a constant c2 such that

f(n, k, 4, ν) ≤
(
n− kν − 1

k − 1

)
+ c2

(
n− kν − 1

k − 3

)
.

6.1.6 Proof of Theorem 6.1.8

Let k′ = k − 2 and n′ = n− kν − 1 for short.
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6.1.6.1 Lower Bound

Let G be an n′-vertex Hd−2
k−1-free k′-multigraph on W with exactly EXk′

(
n′,Hd−2

k−1

)
edges.

Let E ∈ G be an edge of multiplicity `. For every i ∈ [ν] choose ` distinct vertices ci1, . . . , c
i
`

from Ci and add {y, ci1} ∪ E, . . . , {y, cil} ∪ E into Sν . Let L5 denote the resulting family. It is

easy to see that

|L5| =
(
n− kν − 1

k − 1

)
+ νEXk′

(
n′,Hd−2

k−1

)
+ ν.

When d ≥ 5, every k′-graph in Hd−2
k−1 is nondegenerate, i.e. the Turán density π

(
Hd−2
k−1

)
of

Hd−2
k−1 is not 0 (we refer the reader to [135] for more details), we therefore have that Π

(
Hd−2
k−1

)
≥

π
(
Hd−2
k−1

)
≥ (k−2)!

(k−2)k−2 . Since L5 is a d-cluster-free family with ν(L5) = ν + 1, we therefore have

that

f(n, k, d, ν) ≥
(
n− kν − 1

k − 1

)
+ νEXk′

(
n′,Hd−2

k−1

)
+ ν.

6.1.6.2 Upper Bound

Let Md be the maximum possible number of sets in F that are completely contained in I,

and it is easy to see that Md ≤ f(kν, k, d, ν − 1).

Proof of Theorem 6.1.8. Case 1: the family F(x̄) is completely contained in
(
I
k

)
.

For every i ∈ [ν] define the k′-multigraph Gi on U as

Gi =

{
E ∈

(
U

k − 2

)
: ∃b ∈ Bi such that {x, b} ∪ E ∈ F

}
.
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Let E ∈ Gi. Then the multiplicity of E is the number of vertices b in Bi such that {x, b}∪E ∈ F .

For every i ∈ [ν] let gi denote the number of edges in Gi. Without loss of generality, we may

assume that g1 ≥ · · · ≥ gν .

Let S ∈
(
U
k−1

)
, we say that S is bad if Gi[S] ∈ Hd−2

k−1 holds for some i. Note that if S

is bad, then {x} ∪ S 6∈ F , since otherwise there would be d − 2 edges E1, . . . , Ed−2 in Gi for

some i such that they are all contained in S. By the definition of Gi, there exist d− 2 vertices

b1, . . . , bd−2 ∈ Bi such that {x, b1} ∪ E1, . . . , {x, bd−2} ∪ Ed−2 are all contained in F . However,

the d sets Bi, {x} ∪ S, {x, b1} ∪E1, . . . , {x, bd−2} ∪Ed−2 form a d-cluster in F , a contradiction.

Let F≥2 = {F ∈ F(x) : |F ∩ I| ≥ 2}. Then there exists a constant c such that |F≥2| ≤∑k−1
i=2

(|I|
i

)( |U |
k−1−i

)
≤ c
( |U |
k−3

)
. Therefore, we have

|F| ≤
(
|U |
k − 1

)
− β +

ν∑
i=1

gi + c

(
|U |
k − 3

)
+Md.

If g1 ≤ (1 + o(1))EXk′
(
n′,Hd−2

k−1

)
, then we are done. Therefore, we may assume that g1 =

(1+a)EXk−2
(
n′,Hd−2

k−1

)
with a ≥ 2σ holds for some absolute constant σ > 0. By Lemma 6.1.12,

the graph G1 contains at least a/2

( N
k−1)

( |U |
k−1

)
copies of elements in Hd−2

k−1, where N is the smallest

integer satisfying both EXk′
(
N,Hd−2

k−1

)
≤ (1 + σ)Π

(
Hd−2
k−1

) (
N
k−2

)
and N ≥ k − 1.

Let β denote the number of bad sets. Since every copy of element in Hd−2
k−1 forms a bad set

in
(
U
k−1

)
, we therefore have

β ≥ 1

(k − 1)d−2

a

2
(
N
k−1

)( |U |
k − 1

)
=: ac′

(
|U |
k − 1

)
,
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where c′ = 1
2(k−1)d−2( N

k−1)
> 0 is a constant. Therefore, the size of F satisfies

|F| ≤
(
|U |
k − 1

)
− ac′

(
|U |
k − 1

)
+ ν(1 + a)EXk′

(
n′,Hd−2

k−1

)
+ c

(
|U |
k − 3

)
+Md.

Since EXk′
(
n′,Hd−2

k−1

)
≤ d−2

k−1

( |U |
k−2

)
, we obtain that c′

( |U |
k−1

)
> νEXk′

(
n′,Hd−2

k−1

)
and, hence, we

have

|F| ≤
(
|U |
k − 1

)
+ ν(1 + o(1))EXk′

(
n′,Hd−2

k−1

)
.

Case 2: the family F(x̄) is not completely contained in
(
I
k

)
.

Then there exists a set Bν+1 ∈ F(x̄) such that Bν+1 − I 6= ∅. Now let I ′ = I ∪ Bν+1 and let

U ′ = [n]− x− I. For every i ∈ [ν + 1] define the k′-multigraph Gi on U ′ as

Gi =

{
E ∈

(
U ′

k − 2

)
: ∃b ∈ Bi such that {x, b} ∪ E ∈ F

}
.

Let E ∈ Gi. Then the multiplicity of E is the number of vertices b in Bi such that {x, b}∪E ∈ F .

For every i ∈ [ν + 1] let gi denote the number of edges in Gi. Without loss of generality, we

may assume that g1 ≥ · · · ≥ gν+1. Let S ∈
(
U ′

k−1

)
, we say that S is bad if Gi[S] ∈ Hd−2

k−1 holds

for some i. Note that if S is bad, then {x} ∪ S 6∈ F . Let β denote the number of bad sets.

Let F≥2 = {F ∈ F(x) : |F ∩ I ′| ≥ 2}. Then there exists a constant c such that

|F≥2| ≤
k−1∑
i=2

(
|I ′|
i

)(
|U ′|

k − 1− i

)
≤ c
(
|U ′|
k − 3

)
.
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Therefore, we have

|F| ≤
(
|U ′|
k − 1

)
− β +

ν+1∑
i=1

gi + c

(
|U ′|
k − 3

)
+m

≤
(
n− kν − 2

k − 1

)
− β +

ν+1∑
i=1

gi + c

(
n− kν − 2

k − 3

)
+m

=

(
n− kν − 1

k − 1

)
−
(
n− kν − 2

k − 2

)
− β +

ν+1∑
i=1

gi + c

(
n− kν − 2

k − 3

)
+m.

If g1 ≤ (1 + o(1))EXk−2
(
|U ′|,Hd−2

k−1

)
≤ (1 + o(1)) d−2

k−1

(
n−kν−2
k−2

)
, then

|F| ≤
(
n− kν − 1

k − 1

)
+ νEXk−2

(
n′,Hd−2

k−1

)
+m− k − d+ 1

2(k − 1)

(
n− 1

k − 2

)
.

By the assumption that |F| = f(n, k, d, ν), we have m > k−d+1
4(k−1)

(
n−1
k−2

)
. However, Lemma 6.1.16

implies that F contains a d-cluster, a contradiction. Therefore, we may assume that g1 =

(1 + a)EXk′
(
|U ′|,Hd−2

k−1

)
with a ≥ 2σ holds for some absolute constant σ > 0. Lemma 6.1.12

implies that G1 contains at least a/2

( N
k−1)

( |U ′|
k−1

)
copies of elements in Hd−2

k−1. Therefore, we have

β ≥ 1

(k − 1)d−2

a

2
(
N
k−1

)( |U ′|
k − 1

)
=: ac′

(
|U ′|
k − 1

)
,

where c′ = 1
2(k−1)d−2( N

k−1)
> 0 is a constant. So the size of F satisfies

|F| ≤
(
|U ′|
k − 1

)
− ac′

(
|U ′|
k − 1

)
+ (ν + 1)(1 + a)EXk′(|U ′|,Hd−2

k−1) + c

(
|U ′|
k − 3

)
+m.
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Since c′
( |U |
k−1

)
> (ν + 1)EXk′

(
n′,Hd−2

k−1

)
, we therefore have that

|F| ≤
(
|U ′|
k − 1

)
+ (ν + 1)(1 + o(1))EXk′

(
|U ′|,Hd−2

k−1

)
+m

≤
(
n− kν − 1

k − 1

)
−
(
n− kν − 2

k − 2

)
+ (ν + 1)(1 + o(1))EXk′

(
|U ′|,Hd−2

k−1

)
+m

≤
(
n− kν − 1

k − 1

)
+ νEXk′

(
|U ′|,Hd−2

k−1

)
+m− k − d+ 1

2(k − 1)

(
n− 1

k − 2

)
.

By the assumption that |F| = f(n, k, d, ν), we have m > k−d+1
4(k−1)

(
n−1
k−2

)
. However, Lemma6.1.16

implies that F contains a d-cluster, a contradiction. Therefore, we have

f(n, k, d, ν) ≤
(
n− kν − 1

k − 1

)
+ ν(1 + o(1))EXk−2

(
n− kν − 1,Hd−2

k−1

)
.

6.1.7 Proof of Theorem 6.1.10

Proof of Theorem 6.1.10. Let K ⊂
([n]
k

)
be a family that is d-cluster-free but not t-wise inter-

secting and of size g(n, k, d, t). Notice that a family that is not intersecting is also not t-wise

intersecting. Therefore, we have g(n, k, d, t) ≥ f(n, k, d, 1) >
(
n−k−1
k−1

)
.

Now choose δ′ > 0 to be sufficiently small such that δ′ < 2
(
n−k−1
k−1

)
/
(
n−1
k−1

)
− 1 holds for

sufficiently large n, and let ε′, n′0 be given by Theorem 6.1.13. Let n be sufficiently large such

that n > n′0 and
(
n−k−1
k−1

)
> (1 − ε′)

(
n−1
k−1

)
. By Theorem 6.1.13, there exists z ∈ [n] such that

|K(z̄)| < δ′
(
n−1
k−1

)
.
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Notice that K(z̄) is nonempty, since otherwise every set in K would contain z, and this

contradicts our assumption that K is not t-wise intersecting. So, let D be a set in K(z̄) and

consider the family K(z). We claim that there exists a set E ∈ K(z) that is disjoint from D.

Indeed, suppose that every set in K(z) has nonempty intersection with D. Then the size of

K(z) is at most
(
n−1
k−1

)
−
(
n−k−1
k−1

)
, and, hence, we have

|K| ≤
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ δ′

(
n− 1

k − 1

)
<

(
n− k − 1

k − 1

)
,

a contradiction. Therefore, there exists a set E ∈ K(z) that is disjoint from D. However, this

implies that K is not intersecting and, hence, we have g(n, k, d, t) ≤ f(n, k, d, 1). Therefore, the

equation g(n, k, d, t) = f(n, k, d, 1) holds for sufficiently large n.

6.1.8 Concluding Remarks

In Section 6.1.3 we give two constructions for the lower bounds for f(n, k, 3, ν). The first

construction shows that

f(n, k, 3, ν) ≥
(
n− kν − 1

k − 1

)
+
k−1∑
i=2

⌊ν
2

⌋(2k − 2

i− 2

)(
n− kν − 1

k − 1− i

)
+ ν,

while the second construction shows that

f(n, k, 3, ν) ≥
(
n− kν − 1

k − 1

)
+
⌊ν

2

⌋(n− kν − 1

k − 3

)
+ (k − 1)ex(ν, P 3

2 )

(
n− kν − 1

k − 4

)
+ ν.
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Since ex(ν, P 3
2 ) ≥

(
ν
2

)
/3 holds for infinitely many ν, the second construction is better than the

first one for large ν. However, when ν is small, say smaller than 7, then the first construction is

better. So determining the extremal families for f(n, k, 3, ν) seems very complicated in general.
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6.2 Conditionally interesting families

6.2.1 Introduction

Recall that F ⊂
([n]
k

)
is (d, s)-conditionally intersecting if it does not contain d sets with

union of size at most s and empty intersection. In particular, a family F is (d, 2k)-conditionally

intersecting if it does not contain d-clusters, and a k-uniform family is (2, 2k)-conditionally

intersecting if and only if it is intersecting. We use h(n, k, d, s) to denote the maximum size of

a (d, s)-conditionally intersecting family F .

In this section, we consider the structure of conditionally intersecting families, which is

motivated by a structural theorem for (3, 6)-conditionally intersecting family proved by Frankl

[95].

Definition 6.2.1. Let H ⊂ 2[n], and let H ∈ H. A subset G ⊂ H is called unique if there is

no other set in H containing G.

The following result of Bollobás [23] gives an upper bound for the size of a family in which

every set has a unique subset.

Theorem 6.2.2 (Bollobás [23]). Suppose that for every member H of the family H ⊂ 2[n] the

set G(H) ⊂ H is a unique subset. Then

∑
H∈H

1(n−|H−G(H)|
|G(H)|

) ≤ 1.

Frankl [95] proved the following structural result for (3, 6)-conditionally intersecting families.
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Theorem 6.2.3 (Frankl [95]). Suppose that F ⊂
(

[n]
3

)
is a (3, 6)-conditionally intersecting

family. Then F can be partitioned into two families H and B, and the ground set [n] can be

partitioned into two disjoint subsets Y and Z such that the following statements hold.

(a) H ⊂
(
Y
3

)
and every set H ∈ H contains a unique 2-subset.

(b) B ⊂
(
Z
3

)
and B is the vertex disjoint union of |Z|/4 copies of complete 3-graphs on 4

vertices.

First, let us show how to use Theorem 6.2.3 to get an upper bound for |F|. Let F ⊂
(

[n]
3

)
be a

(3, 6)-conditionally intersecting family, and let Y,Z,B and H be given by Theorem 6.2.3. Since

every set in H contains a unique 2-subset, it follows from Theorem 6.2.2 that |H| ≤
(|Y |−1

2

)
.

On the other hand, it is easy to see that |B| = |Z|. Therefore,

|F| = |H|+ |F| ≤
(
|Y | − 1

2

)
+ |Z| ≤

(
n− 1

2

)
,

and equality holds only if Z = ∅.

In [95], Frankl also asked for a structural result for a (3, 2k)-conditionally intersecting family

F ⊂
([n]
k

)
which can imply the

(
n−1
k−1

)
bound for |F|. Here we consider a more general question,

namely the structures of (d, 2k+d−3)-conditionally intersecting families for all k ≥ d ≥ 3, and

we obtain the following result.

Let Lk denote the collection of all k-graphs on at most 2k vertices.
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Theorem 6.2.4. Let k ≥ d ≥ 3 be fixed. Suppose that F ⊂
([n]
k

)
is a (d, 2k+d−3)-conditionally

intersecting family. Then F can be partitioned into three families H, B and S, and the ground

set [n] can be partitioned into two subsets Y and Z such that the following statements hold.

(a) H ⊂
(
Y
k

)
and every set H ∈ H contains a unique (k − 1)-subset.

(b) Z has a partition V1 ∪ · · · ∪ Vt with each Vi of size at most 2k such that B ⊂
⋃t
i=1

(
Vi
k

)
,

i.e., the family B is the vertex disjoint union of copies of k-graphs in Lk

(c) S ⊂
([n]
k

)
−
(
Y
k

)
, and for every set S ∈ S and every Vi ⊂ Z the size of S ∩ Vi is either 0

or at least d.

Note that the constraint on |S ∩ Vi| in (c) for S ∈ S and Vi ⊂ Z implies that the family S

is actually very sparse. Therefore, the term |S| contributes very little to |F|.

Our next result gives a structure for (k, 2k)-intersecting families for all k ≥ 3.

Theorem 6.2.5. Let k ≥ 3 be fixed. Suppose that F ⊂
([n]
k

)
is a (k, 2k)-conditionally inter-

secting family. Then F can be partitioned into two families H and B, and the ground set [n]

can be partitioned into two subsets Y and Z such that the following statements hold.

(a) H ⊂
(
Y
k

)
and every set H ∈ H contains a unique (k − 1)-subset.

(b) B ⊂
(
Z
k

)
and B is the vertex disjoint union of |Z|k+1 copies of complete k-graphs on (k + 1)

vertices.

Applying the structural results above we are able to give some new proofs to the following

theorems.
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Theorem 6.2.6. Let k ≥ d ≥ 3 be fixed and n ≥ 3k5. Suppose that F ⊂
([n]
k

)
is a (d, 2k+d−3)-

conditionally intersecting family. Then |F| ≤
(
n−1
k−1

)
.

Note that Theorem 6.2.6 is true for every n ≥ 3k/2 according to the result in [190], but in

our proof we need the assumption that n ≥ 3k5 to keep the calculations simple.

Theorem 6.2.7. Let k ≥ 3 be fixed and n ≥ k2/(k − 1). Suppose that F ⊂
([n]
k

)
is a (k, 2k)-

conditionally intersecting family. Then |F| ≤
(
n−1
k−1

)
.

Theorem 6.2.8. Let k ≥ 3 be fixed and n ≥ 3k
(

2k
k

)
. Let F ⊂

([n]
k

)
be a family that is (3, 2k)-

conditionally intersecting but not intersecting. Then |F| ≤
(
n−k−1
k−1

)
+ 1.

Note that Theorem 6.2.8 shows that Mammoliti and Britz’s conjecture is true for d = 3,

and the proof here is completely different from the proof in the previous section.

6.2.2 Structural Results

Let F be a k-uniform family on [n] and B ∈ F . We say B is bad if it does not contain

any unique (k − 1)-subset. Suppose that B = {b1, . . . , bk} is a bad set in F , then there exist k

distinct sets C1, . . . , Ck in F such that B∩Ci = B−{bi} for all i ∈ [k]. Let VB = B∪C1 · · ·∪Ck

and HB = {B,C1, . . . , Ck}. First let us prove Theorem 6.2.5.

Proof of Theorem 6.2.5. Suppose that F is a (k, 2k)-conditionally intersecting family, and sup-

pose that B = {b1, . . . , bk} is a bad set in F . Let C1, · · · , Ck, VB, HB be defined as above.

Since |VB| ≤ 2k, by assumption we have C1 ∩ · · · ∩ Ck 6= ∅. It follows that |VB| = k + 1 and,

hence, the family HB is a complete k-graph on VB. Let bk+1 denote the vertex in VB −B, and

let F ∈ F − HB. Then we claim that F ∩ VB = ∅. Indeed, suppose that F ∩ VB 6= ∅. We
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may assume that F ∩ VB = {b1, . . . , b`} for some ` ∈ [k − 1]. Now, rename the edges in HB as

Bi = VB − bi for all i ∈ [k + 1]. Since |F ∪B1 ∪ · · · ∪Bk−1| ≤ 2k and F ∩B1 ∩ · · · ∩Bk−1 = ∅,

the k sets F,B1, . . . , Bk−1 form a k-cluster in F , a contradiction. Therefore, F ∩ VB = ∅. To

finish the proof we just let B be the collection of all bad sets in F , and let H = F − B.

Before proving Theorem 6.2.4 let us present a useful lemma. Let s = 2k + d− 3.

Lemma 6.2.9. Suppose that F is a (d, s)-conditionally intersecting family and B is a bad set

in F . Then for every F ∈ F either |F ∩ VB| = 0 or |F ∩ VB| ≥ d.

Proof. Let B is a bad set in F and let VB be the set as we defined before. Suppose that

F ∈ F has nonempty intersection with VB. It suffices to show that |F ∩ VB| ≥ d. For

contradiction, suppose that |F ∩B| = x, |F ∩ (VB −B)| = y and x+ y ≤ d− 1. Suppose that

F ∩B = {bm1 , . . . , bmx} and F ∩ (VB −B) = {cn1 , . . . , cny}.

If x = d − 1, then y = 0 and, hence, the d sets F,Cm1 , . . . , Cmd−1
satisfy |F ∪ Cm1 ∪

· · · ∪ Cmd−1
| ≤ 2k and F ∩ Cm1 ∩ · · · ∩ Cmd−1

= ∅, a contradiction. If x = d − 2, then the

d sets F,B,Cm1 , . . . , Cmd−2
satisfy |F ∪ B ∪ Cm1 ∪ · · · ∪ Cmd−2

| ≤ 2k and F ∩ B ∩ Cm1 ∩

· · · ∩ Cmd−2
= ∅, a contradiction. Therefore, we may assume that x ≤ d − 3. Let p =

d− (x + 2). Choose p sets Cq1 , . . . , Cqp from {C1, . . . , Ck} − {Cm1 , . . . , Cmx}. Then the d sets

F,B,Cm1 , . . . , Cmx , Cq1 , . . . , Cqp satisfy |F ∪ B ∪ Cm1 ∪ · · · ∪ Cmx ∪ Cq1 ∪ · · · ∪ Cqp | ≤ 2k + p

and F ∩ B ∩ Cm1 ∩ · · · ∩ Cmx ∩ Cq1 ∩ · · · ∩ Cqp = ∅. By assumption we have 2k + p ≥ s and,

hence, x = 0 and y ≥ 1.
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Let p′ = d − (y + 2), and choose p′ sets Cq1 , . . . , Cqp′ from {C1, . . . , Ck} − {Cn1 , . . . , Cny}.

Then the d sets F,B,Cn1 , . . . , Cny , Cq1 , . . . , Cqp′ satisfy |F∪B∪Cn1∪· · ·∪Cny∪Cq1∪· · ·∪Cqp′ | ≤

2k + p′ ≤ s and F ∩ B ∩ Cn1 ∩ · · · ∩ Cny ∩ Cq1 ∩ · · · ∩ Cqp′ = ∅, a contradiction. Therefore, we

have |F ∩ Vb| ≥ d.

Now we are ready to prove Theorem 6.2.4.

Proof of Theorem 6.2.4. Let F be a (d, s)-conditionally intersecting family. Choose a collection

of bad sets {B1, . . . , Bt} for some t from F such that the sets VB1 , . . . , VBt are pairwise disjoint,

and any other bad set in F has nonempty intersection with VBi for some i ∈ [t]. Note that this

can be done by greedy choosing each Bi from F such that Bi is disjoint from
⋃
j<i VBj , and by

Lemma 6.2.9 the set VBi is also disjoint from
⋃
j<i VBj .

Now let Vi = VBi and Hi = HBi for i ∈ [t]. Let Z =
⋃
i∈[t] Vi and Y = [n] − Z. Let

B =
⋃
i∈[t]Hi, H = F ∩

(
Y
k

)
and S = F − B −H. Suppose that S ∈ S. Then by Lemma 6.2.9,

either |S ∩ Vi| = 0 or |S ∩ Vi| ≥ d for every i ∈ [t], and this completes the proof of Theorem

6.2.4.

6.2.3 Applications

In this section we show some applications of Theorems 6.2.4 and 6.2.5 by giving new proofs

to Theorems 6.2.6, 6.2.7, and 6.2.8. First let us prove Theorem 6.2.7.

Proof of Theorem 6.2.7. Suppose that F is a (k, 2k)-conditionally intersecting family on [n].

Let Y, Z,B and H be given by Theorem 6.2.5. By Theorem 6.2.2, H ≤
(|Y |−1
k−1

)
. On the other
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hand, it is easy to see that |B| = (k + 1) × |Z|/(k + 1) = |Z|. Therefore, |F| = |H| + |B| ≤(|Y |−1
k−1

)
+ |Z| ≤

(
n−1
k−1

)
, and equality holds only if Z = ∅.

Now we apply Theorem 6.2.4 to prove Theorem 6.2.6.

Proof of Theorem 6.2.6. Let F be a (d, 2k+d−3)-conditionally intersecting family on n ≥ 3k5

vertices. Let Y,Z,B,H and S be given by Theorem 6.2.4. Let vi = |Vi| for i ∈ [t]. Let Y0 = Y

and Yi = Yi−1 ∪ Vi for i ∈ [t] and let yi = |Yi| for 0 ≤ i ≤ t. Define Hi = F ∩
(
Yi
k

)
and let

hi = |Hi|. By Lemma 6.2.9, every set H ∈ Hi is either disjoint from Vi or has an intersection

of size at least d with Vi. Therefore, |Hi| ≤ |Hi−1|+
∑k

`=d

(
vi
`

)(yi−1

k−`
)
. Inductively, we obtain

|F| ≤ |H|+
t−1∑
i=0

k∑
`=d

(
vi+1

`

)(
yi

k − `

)
≤
(
y0 − 1

k − 1

)
+

t−1∑
i=0

k∑
`=d

(
2k

`

)(
n− k − 1

k − `

)
.

Since
(

2k
`

)(
n−k−1
k−`

)
≥
(

2k
`+1

)(
n−k−1
k−`−1

)
, we obtain

|F| ≤
(
y0 − 1

k − 1

)
+

t−1∑
i=0

(k − d)

(
2k

d

)(
n− k − 1

k − d

)

≤
(
y0 − 1

k − 1

)
+ (k − d)

(
2k

d

)(
n− k − 1

k − d

)
n− y0

k + 1

≤
(
y0 − 1

k − 1

)
+

(
2k

3

)(
n− k − 1

k − 3

)
(n− y0).

Now let δ =
(

2
(

2k
3

))−1
. If n− y0 ≤ δn, then

|F| <
(
n− 1

k − 1

)
− k
(
n− k − 1

k − 2

)
+
n

2

(
n− k − 1

k − 3

)
<

(
n− 1

k − 1

)
,
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and we are done. Therefore, we may assume that y0 ≤ (1− δ)n. Then

|F| ≤

(
1− 1

4
(

2k
3

))(n− 1

k − 1

)
+

(
n− k − 1

k − 3

)
n

2
≤
(
n− 1

k − 1

)
,

and this completes the proof of Theorem 6.2.6.

The remaining part of this section is devoted to prove Theorem 6.2.8. We will use the

following lemma in our proof.

Lemma 6.2.10. Suppose that H ⊂
([n]
k

)
, and every set H ∈ H has a unique (k − 1)-subset

G(H) ⊂ H. Then

|H| ≤ n− k + 1

n
|∂H|.

Proof. Consider a weight function ω(G,H) for all pairs G ⊂ H ∈ F with |G| = k − 1. For

every G ∈ ∂H and every H ∈ H assign weight 1 to (G,H) if G = G(H) and (n − k + 1)−1 if

G 6= G(H). Then an easy double counting gives

(
1 +

k − 1

n− k + 1

)
|H| =

∑
(G,H)

ω(G,H) ≤ |∂H|,

which implies |H| ≤ (n− k + 1)|∂H|/n.

Definition 6.2.11. Let F ⊂
([n]
k

)
and S ⊂ [n]. Then F is a full star on S if it is the collection

of all k-subsets of S that contain a fixed vertex v, and F is a star if it is a subfamily of some

full star on S. In either case, we call v the core of F .
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Now we prove Theorem 6.2.8.

Proof of Theorem 6.2.8. Let n ≥ 3k
(

2k
k

)
and let F be a family on [n] such that F is (3, 2k)-

conditionally intersecting but not intersecting. Suppose that B ∈ F is a bad set. Let VB, HB

be as defined at the beginning of this section and let F ′ = F ∩
([n]−VB

k

)
. Since F ′ is also

(3, 2k)-intersecting, by result in [190], |F ′| ≤
(n−|VB |−1

k−1

)
| ≤

(
n−k−2
k−1

)
. Then by Lemma 6.2.9,

|F| ≤ |F ′|+
k∑
i=3

(
2k

i

)(
n− k − 1

k − i

)

≤
(
n− k − 2

k − 1

)
+ k

(
2k

3

)(
n− k − 1

k − 3

)
=

(
n− k − 1

k − 1

)
−
((

n− k − 2

k − 2

)
− k
(

2k

3

)(
n− k − 1

k − 3

))
<

(
n− k − 1

k − 1

)
+ 1,

and we are done. So we may assume that every F ∈ F has a unique (k − 1)-subset G(F ).

Since F is not intersecting, there exist two disjoint sets A,B in F . Assume that A =

{a1, . . . , ak} and B = {b1, . . . , bk}. Let I = {a1, . . . , ak, b1, . . . , bk} and let U = [n] − I. For

every set C ⊂ U of size at most k − 1 define the family F(C) on I as follows:

F(C) = {F − C : F ∈ F and F ∩ U = C} .

For every i ∈ {0, 1, . . . , k} let

Fi = {F ∈ F : |F ∩ I| = i}.
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First notice that Fk = {A,B}, since any extra edge in Fk together with A,B would form a

3-cluster in F . Next, we will prove

∑̀
i=0

|Fi| ≤
∑̀
i=1

(
n− 2k

k − i

)(
k − 1

i− 1

)
. (6.1)

for all ` ∈ [k]. Suppose that Equation 6.1 is true, then by letting ` = k we obtain

|F| =
k∑
i=0

|Fi| ≤
k−1∑
i=1

(
n− 2k

k − i

)(
k − 1

i− 1

)
+ 2 =

(
n− k − 1

k − 1

)
+ 1,

and this will complete the proof of Theorem 6.2.8. One could compare Equation 6.1 with a

similar inequality in [190], which is

|F| ≤
k∑
`=1

(
n− tk
k − `

)(
tk − 1

`− 1

)
=

(
n− 1

k − 1

)
, (6.2)

where t is the maximum number of pairwise disjoint sets in F . For the case t = 2, the

summand in Equation 6.2 is
(
n−2k
k−`

)(
2k−1
`−1

)
, but the summand in Equation 6.1 is

(
n−2k
k−`

)(
k−1
`−1

)
,

which is smaller when ` ≥ 2.

Claim 6.2.12. Let F ∈ F1. Then the set F ∩ U is a unique (k − 1)-subset of F in F .

Proof. Without lose of generality, we may assume that F = {a1, f1, . . . , fk−1}, where f1, . . . , fk−1

are contained in U . Suppose that there is another edge F ′ ∈ F containing {f1, . . . , fk−1}. Then

the three sets A,F, F ′ form a 3-cluster in F , a contradiction. Therefore, F ∩U = {f1, . . . , fk−1}

is a unique (k − 1)-subset of F in F .
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Now we prove Equation 6.1 for ` = 1. Let us consider the family F0 ∪ F1. Define

M =

{
G ∈

(
U

k − 1

)
: ∃F ∈ F0 ∪ F1 such that G ⊂ F

}
.

By assumption, every set F ∈ F0 ∪F1 has a unique (k− 1)-subset G(F ), and by Claim 6.2.12,

we may assume that G(F ) ⊂ U . Let G = {G(F ) : F ∈ F1}. For every set F1 ∈ F1, the set

G(F1) cannot be contained in ∂F0, since otherwise one could easily find a 3-cluster. Therefore,

G and ∂F0 are disjoint. Since |G| = |F1|, by Lemma 6.2.10, we have

|U |
|U | − k + 1

|F0|+ |F1| ≤ |M| ≤
(
n− 2k

k − 1

)
,

and hence |F0|+ |F1| ≤
(
n−2k
k−1

)
.

To prove Equation 6.1 for ` ≥ 2, we need to give an upper bound for |Fi| for every 2 ≤ i ≤

k − 1. Since |Fi| =
∑

C∈( U
k−i)
|F(C)|, it suffices to give an upper bound for |F(C)| for every

C ∈
(
U
k−i
)
. Unfortunately, the inequality |F(C)| ≤

(
k−1
i−1

)
is not true in general. So, in our

proof, we will build a relationship between Fi and
⋃
j<iFj and then use this relation to prove

Equation 6.1.

The basic idea in our proof is showing that if |F(C)| is bigger than its expected value(
k−1

k−|C|−1

)
, then there must be many sets D containing C such that the size of F(D) is smaller

than its expected value
(

k−1
k−|D|−1

)
.
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Let C ⊂ U be a set of size at most k − 2. We say C is perfect if the family F(C) is a full

star on either A or B. Let D ⊂ U be a set of size k − 1. We say D is perfect if there exists a

set F in F that contains D.

For every i ∈ [k − 1] let Pi be the collection of all perfect sets in
(
U
k−i
)
, and let Ni be the

collection of non-perfect sets in
(
U
k−i
)
. Let pi = |Pi| and ni = |Ni| for i ∈ [k − 1] and notice

that pi + ni =
( |U |
k−i
)
.

For every i ∈ {2, . . . , k − 1} let P ′i denote the collection of all sets C ∈
(
U
k−i
)

such that C

is contained in a perfect set in
(

U
k−i+1

)
, and let N ′i denote the collection all of sets D ∈

(
U
k−i
)

such that D is not contained in any perfect set in
(

U
k−i+1

)
. Let p′i = |P ′i| and n′i = |N ′i | for

i ∈ {2, . . . , k − 1}. Let Gi = Ni ∩ P ′i and Bi = Ni ∩ N ′i , and let gi = |Gi| and bi = |Bi| for

i ∈ {2, . . . , k − 1}. Let G1 = N1, and let g1 = n1, b1 = 0. Note that by definition, bi + gi = ni

and n′i ≥ bi for i ∈ [k − 1].

By the definition of perfect sets, |F(C)| =
(
k−1
i−1

)
for all C ∈ Pi. Later we will show that

|F(C)| <
(
k−1
i−1

)
for all C ∈ Gi. For every C ∈ Bi it could be true that |F(C)| >

(
k−1
i−1

)
. However,

for every C ∈ Bi there are either many sets in Gi−1 containing C, which means that there are

many sets D ∈
(

U
k−i+1

)
with |F(D)| smaller than its expected value, or there are many sets in

Bi−1, in which case we turn to consider sets in
(

U
k−i+2

)
and repeat this argument until we end

up with many sets P in
(
U
k−1

)
with |F(P )| smaller than its expected value.

The next claim gives a relation between ni and bi+1.
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Claim 6.2.13. For every i ∈ [k − 2] we have

ni ≥
n− 3k

k
bi+1.

Proof. Let C ∈ N ′i+1, and let u ∈ U − C. By definition C ∪ {u} is a non-perfect set in(
U
k−i
)
. Therefore, we have (k − i)ni ≥ n′i+1(n − 3k + i + 1) ≥ bi+1(n − 3k). It follows that

ni ≥ (n− 3k)bi+1/k.

Claim 6.2.14. The following statement holds for all ` ≥ (k + 1)/2. Suppose that C ⊂ U is

a perfect set of size `, and F(C) is a full star on A (or on B) with core v. Then for every

(`− 1)-subset C ′ of C the family F(C ′) is a star on A (or on B) with core v.

Proof. Let C ⊂ U such that F(C) is a full star on A with core v ∈ A. Without loss of generality

we may assume that v = a1. Let E′ ∈ F(C ′). If E′ ⊂ B, then choose a set E from F(C),

and the three sets E ∪ C,E′ ∪ C ′, B form a 3-cluster in F , a contradiction. If E′ ∩ A 6= ∅ and

E′ ∩B 6= ∅, then let x = |E′ ∩A| and y = |E′ ∩B|. Since x+ y = k − `+ 1, we have x ≤ k − `

and y ≤ k − `. If a1 6∈ E′ ∩ A, then by the assumption that ` ≥ (k + 1)/2 and F(C) is a full

star, there exists a set E ∈ F(C) such that (E′∩A)∩E = ∅. So the three sets E′∪C ′, E∪C,A

form a 3-cluster in F , a contradiction. If a1 ∈ E′ ∩ A, then by assumption there exists a set

E ∈ F(C) such that E′ ∩A ⊂ E. However, the three sets E ∪C,E′ ∪C ′, B form a 3-cluster in

F , a contradiction. Therefore, every set in F(C ′) is completely contained in A.

Next, we show that every set E′ ∈ F(C ′) contains a1. Suppose there exists a set E′ ∈ F(C ′)

such that a1 6∈ E′. By assumption we have k− `+ 1 +k− ` ≤ k, so there exists a set E ∈ F(C)
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such that E ∩ E′ = ∅. However, the three sets E′ ∪ C ′, E ∪ C,A form a 3-cluster in F , a

contradiction. Therefore, the family F(C ′) is a star on A with core a1.

For every i ∈ [k − 1] let wi =
(
k−1
i−1

)(
n−2k
k−i

)
and ki =

(
2k
i

)
−
(
k−1
i−1

)
+ 1. Our next claim gives

an upper bound for |Fi| for 2 ≤ i ≤ (k + 1)/2.

Claim 6.2.15. For every i satisfying 2 ≤ i ≤ (k + 1)/2 we have

|Fi| ≤ wi + kibi − ni.

Proof. Let us give an upper bound for |F(C)| for every C ∈
(
U
k−i
)
. First notice that by definition

|F(C)| =
(
k−1
i−1

)
for all C ∈ Pi. By Claim 6.2.14, |F(C)| ≤

(
k−1
i−1

)
− 1 for all C ∈ Gi. On the

other hand, it is trivially true that |F(C)| ≤
(

2k
i

)
for all C ∈ Bi. Therefore,

|Fi| =
∑
C∈Pi

|F(C)|+
∑
C∈Gi

|F(C)|+
∑
C∈Bi

|F(C)|

≤
(
k − 1

i− 1

)
pi +

((
k − 1

i− 1

)
− 1

)
gi +

(
2k

i

)
bi

=

(
k − 1

i− 1

)(
n− 2k

k − i

)
+

((
2k

i

)
−
(
k − 1

i− 1

)
+ 1

)
bi − ni = wi + kibi − ni.

Here we used that fact that bi + gi = ni and ni + pi =
(
n−2k
k−i

)
.

Recall that Claim 6.2.13 says that ni ≥ (n− 3k)bi+1/k. Since n ≥ 3k
(

2k
k

)
and ki+1 <

(
2k
k

)
,

we have ni/2 ≥ ki+1bi+1. Combining this inequality with Claim 6.2.15 we obtain the following

claim.
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Claim 6.2.16. For every ` satisfying 1 ≤ ` ≤ (k + 1)/2 we have

∑̀
i=0

|Fi| ≤
∑̀
i=1

wi −
∑̀
i=1

ni
2
.

Proof. The case ` = 1 follows from the inequality that

|F0|+ |F1| ≤ |M| =
(
n− 2k

k − 1

)
− n1.

For ` ≥ 2 by Claim 6.2.15 we obtain

∑̀
i=0

|Fi| ≤
∑̀
i=1

(wi + kibi − ni) =
∑̀
i=1

wi −
`−1∑
i=1

(ni − ki+1bi+1)− n` ≤
∑̀
i=1

wi −
∑̀
i=1

ni
2
.

The next step is to extend Claim 6.2.16 to all ` > (k + 1)/2.

Claim 6.2.17. Let C ⊂ U be a set of size ` ≥ 2. Suppose that F(C) is a full-star on A (or

on B) with core v and there exists a perfect set P ∈
(
U
k−1

)
containing C. Then, for every

(`− 1)-subset C ′ ⊂ C the family F(C ′) is a star on A (or on B) with core v.

Proof. Let C ⊂ U be a set of size ` such that F(C) is a full-star on A with core v. Without

loss of generality we may assume that v = a1. Let P ∈
(
U
k−1

)
be a perfect set containing C. By

the definition of perfect set there exists a set F ∈ F containing P . Suppose that F = P ∪ {u},
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and we want to show that u = a1. Suppose that u 6∈ A. Then for every E ∈ F(C) the three

sets A,F,E ∪ C form a 3-cluster in F , a contradiction. Therefore, u ∈ A.

Now suppose for the contrary that u 6= a1. Then by assumption there exists a set E ∈ F(C)

not containing u and, hence, the three sets A,F,E ∪ C form a 3-cluster in F , a contradiction.

Therefore, u = a1.

Let C ′ ⊂ C be a set of size `− 1 and E′ ∈ F(C ′). If E′ ⊂ B, then for every E ∈ F(C) the

three sets E∪C,E′∪C ′, B form a 3-cluster in F , a contradiction. If E′∩A 6= ∅ and E′∩B 6= ∅,

then let x = |E′ ∩ A| and y = |E′ ∩ B|. Since x + y = k − ` + 1, we have x ≤ k − ` and

y ≤ k− `. If x ≤ k− `− 1, then by assumption there exists a set E ∈ F(C) containing E′ ∩A.

However, the three sets E ∪ C,E′ ∪ C ′, B form a 3-cluster in F , a contradiction. Therefore,

we may assume that x = k − `. If a1 ∈ E′ ∩ A, then there exists a set E ∈ F(C) such that

E′ ∩A = E. However, the three sets E ∪C,E′ ∪C ′, B form a 3-cluster in F , a contradiction. If

a1 6∈ E′ ∩A, then the three sets A,F,E′ ∪C ′ form a 3-cluster in F , a contradiction. Therefore,

every set in F(C ′) is completely contained in A.

Suppose that there is a set E′ ∈ F(C ′) not containing a1, then the three sets A,F,E′ ∪ C ′

would form a 3-cluster in F , a contradiction. Therefore, every set in F(C ′) contains a1, and

this complete the proof of Claim 6.2.17.

Let c = b(k + 1)/2c and let m = bk/2c, and notice that m + c = k. The next claim shows

that Equation 6.1 holds for ` = c+ 1.
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Claim 6.2.18. We have

c+1∑
i=0

|Fi| ≤
c+1∑
i=1

wi −
c+1∑
i=1

ni
4
.

Proof. Similar to the proof of Claim 6.2.15, for every C ∈ Pc+1 we have |F(C)| =
(
k−1
c

)
, and

for every C ∈ Bc+1 we have |F(C)| ≤
(

2k
c+1

)
.

For every perfect set D ∈
(
U
m

)
we say that D is a good container if D itself is contained in

a perfect (k − 1)-set, otherwise we say that D is a bad container. Let S be the collection of

all sets in Gc+1 that are contained in a good container. Let T be the collection of all sets in

Gc+1 that are not contained in any good container. Let s = |S| and t = |T |. Since every bad

container in
(
U
m

)
has m subsets of size m − 1, the number of bad containers in

(
U
m

)
is at least

t/m.

Let D ∈
(
U
m

)
be a bad container. Then for every E ∈

(
U−D
k−m−1

)
the set D ∪E is non-perfect

in
(
U
k−1

)
. Therefore, n1 ≥

(
n−2k−m
c−1

)
t/
(
m
(
k−1
m

))
. By definition, every set C ∈ Gc+1 is contained

in a perfect set D ∈
(
U
m

)
. If C ∈ S, then by Claim 6.2.17, |F(C)| ≤

(
k−1
c

)
− 1. If C ∈ T , then

it is trivially true that |F(C)| ≤
(
k
c+1

)
. Therefore,

|Fc+1| =
∑

C∈Pc+1

|F(C)|+
∑

C∈Bc+1

|F(C)|+
∑
C∈S
|F(C)|+

∑
C∈T
|F(C)|

≤
(
k − 1

c

)
pc+1 +

(
2k

c+ 1

)
bc+1 +

((
k − 1

c

)
− 1

)
s+

(
2k

c+ 1

)
t

= wc+1 + kc+1bc+1 + kc+1t− nc+1.
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Here we used the fact that s + t = gc+1, gc+1 + bc+1 = nc+1 and nc+1 + pc+1 =
(
n−2k
k−c−1

)
.

Combining the inequality above with Claim 6.2.15, we obtain

c+1∑
i=0

|Fi| ≤
c+1∑
i=1

(wi + kibi − ni) + kc+1t.

Since n1/4 ≥ kc+1t and ni/2 ≥ ki+1bi+1,

c+1∑
i=0

|Fi| ≤
c+1∑
i=1

wi −
c+1∑
i=1

ni
4
.

Claim 6.2.19. Every set C ⊂ U of size at most k − c is contained in a perfect (k − 1)-set.

Proof. Let C ⊂ U be a set of size ` ≤ k − c. Suppose that C is not contained in any perfect

(k − 1)-set. Then for every S ∈
(
U−C
k−`−1

)
the set C ∪ S is non-perfect and of size k − 1.

Therefore, we have n1 ≥
(
n−2k−`
k−`−1

)
/
(
k−1
`

)
≥
(
n−2k−`
c−1

)
/
(
k−1
`

)
. On the other hand, we have∑k−1

i=c+2 |Fi| ≤
∑k−1

i=c+2

(
2k
i

)(
n−2k
k−i

)
. Since n ≥ 3k

(
2k
k

)
, n1/4 >

∑k−1
i=c+2 |Fi|. Therefore, by Claim

6.2.18,

k−1∑
i=0

|Fi| =
c+1∑
i=1

|Fi|+
k−1∑
i=c+2

|Fi| ≤
c+1∑
i=1

wi −
c+1∑
i=1

ni
4

+

k−1∑
i=c+2

(
2k

i

)(
n− 2k

k − c− 2

)
<

k−1∑
i=1

wi,

and we are done. So we may assume that C is contained in a perfect (k − 1)-set.

Claim 6.2.20. The inequality |Fi| ≤ wi + tibi − ni holds for all i ≥ c+ 1.
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Proof. By Claim 6.2.19, every set C ⊂ U of size at most k−c is contained in a perfect (k−1)-set.

Therefore, by Claim 6.2.17,

|Fi| =
∑
C∈Pi

|F(C)|+
∑
C∈Gi

|F(C)|+
∑
C∈Bi

|F(C)|

≤
(
k − 1

i− 1

)
pi +

((
k − 1

i− 1

)
− 1

)
gi +

(
2k

i

)
bi.

By Claims 6.2.13, 6.2.15, and 6.2.20,

k−1∑
i=0

|Fi| ≤
k−1∑
i=1

(wi + tibi − ni) =
k−1∑
i=1

wi −
k−2∑
i=1

(ni − ti+1bi+1)− nk−1

≤
k−1∑
i=1

wi −
k−1∑
i=1

ni
2
,

which proves Equation 6.1, and equality holds if and only if C is perfect for every C ∈
(
U
i

)
and

for every i ∈ [k − 1], which implies that F is the disjoint union of a k-set and a full star.



333

6.3 Katona’s intersecting shadow theorem

6.3.1 Introduction

The seminal Kruskal–Katona theorem gives a tight upper bound for |H| as a function of

|∂H|. In order to state its precise form, we need the following definition.

The colex order on
([n]
k

)
is defined as follows:

A ≺ B iff max{(A \B) ∪ (B \A)} ∈ B.

Write LmH to denote the set of the first m elements of H ⊂
([n]
k

)
in the colex order. When

H =
([n]
k

)
, we abuse notation by simply writing Lm

([n]
k

)
.

The Kruskal–Katona theorem states that the families in
([n]
k

)
with a fixed number of sets

and minimum shadow size are initial elements of the colex order.

Theorem 6.3.1 (Kruskal–Katona [132; 154]). For n ≥ k > ` ≥ 1 and H ⊂
([n]
k

)
with |H| = m,

|∂`H| ≥
∣∣∣∣∂`Lm([n]

k

)∣∣∣∣ .
6.3.1.1 Katona’s shadow intersection theorem

The Kruskal–Katona theorem was extended to many families with additional properties.

One such central result is due to Katona [131] who proved the following theorem for t-intersecting

families, which are families in which every two sets have at least t common elements.
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Theorem 6.3.2 (Katona [131]). Let n ≥ k > t ≥ ` ≥ 1. If H ⊂
([n]
k

)
is t-intersecting, then

|∂`H| ≥
(

2k−t
k−`
)(

2k−t
k

) |H|.
The only case of equality in Theorem 6.3.2 is when n = 2k − t and H ∼=

([2k−t]
k

)
(see [1]).

Theorem 6.3.2 is a foundational result in extremal set theory with many applications. Its

first application was to prove a conjecture of Erdős-Ko-Rado on the maximum size of a t-

intersecting family in 2[n]. It was used to obtain short new proofs for several classical results.

For example, Frankl–Füredi [103] used it to give a short proof for the Erdős–Ko–Rado theorem,

and Frankl–Tokushige [106] used it to obtain a short proof for the Hilton–Milner theorem. It

also has many applications to Sperner families and other types of intersection problems [28; 42;

98; 100; 116; 185; 224; 250].

This paper is concerned with improving the bounds in Theorem 6.3.2 and related results

about shadows of families with certain properties. In many cases the bounds we prove are best

possible.

Our first result improves Theorem 6.3.2 for intersecting families (the case t = 1) and applies

to all n > 2k. It is convenient to define the family

EKR(n, k) =

{
A ∈

(
[n]

k

)
: 1 ∈ A

}
.
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Theorem 6.3.3. Let n > 2k ≥ 6 and 1 ≤ ` < k. Suppose that H ⊂
([n]
k

)
is intersecting and

|H| = m > m(n, k) =


3n− 8, if k = 3,

(
n−1
k−1

)
−
(
n−k
k−1

)
+
(
n−k−2
k−3

)
+ 2, if k ≥ 4.

Then |∂`H| ≥ |∂`LmEKR(n, k)|. In particular, if for some x ∈ R

|H| =
(
x− 1

k − 1

)
> m(n, k) (6.3)

then |∂`H| ≥
(
x
k−`
)
.

Remarks.

• For k = 3 and m = 3n − 8, the inequality |∂H| < |∂LmEKR(n, k)| is possible (see

Fact 6.3.27 with t = 1), so Theorem 6.3.3 is best possible in this sense. In fact, when

k = 3 one can compute the sharp lower bound for |∂H| for all intersecting families H

using our proof method but we do not carry out all these details.

• For fixed k > 3 and n → ∞, we will lower the value of m(n, k) from (k − 1 + o(1))
(
n
k−2

)
to (3 + o(1))

(
n
k−2

)
in Theorem 6.3.10 and the constant 3 will be shown to be tight.

Ahlswede, Aydinian, and Khachatrian [1] considered large t-intersecting families on N. Let(N
k

)
denote the collection of all k-subsets of N and let

EM(N, k, s, t) =

{
A ∈

(
N
k

)
: |A ∩ [s]| ≥ t

}
.
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Theorem 6.3.4 (Ahlswede–Aydinian–Khachatrian [1]). Let H ⊂
(N
k

)
be a t-intersecting family.

• For 1 ≤ ` ≤ t < k, there exists m1(k, t, `) ∈ N such that if |H| = m ≥ m1(k, t, `), then

|∂`H| ≥ |∂`LmEM(N, k, 2k − 2− t, k − 1)|.

• For 1 ≤ t < ` < k, there exists m2(k, t, `) ∈ N such that if |H| = m ≥ m2(k, t, `), then

|∂`H| ≥ |∂`LmEM(N, k, t, t)|.

Let

EM(n, k, s, t) =

{
A ⊂

(
[n]

k

)
: |A ∩ [s]| ≥ t

}
,

and set EM(n, k, s, t) = ∅ if t > min{k, s}, and EM(n, k, s, t) =
([n]
k

)
if t ≤ 0. Notice that if

t ≤ k ≤ n ≤ s, then EM(n, k, s, t) is a complete k-graph on n vertices.

Notice that for every m ≤
(
n−t
k−t
)

we have LmEM(n, k, t, t) = LmEM(N, k, t, t). Therefore,

Theorem 6.3.4 implies the following result.

Corollary 6.3.5. Let 1 ≤ t < ` < k and H ⊂
([n]
k

)
be a t-intersecting family with |H| = m >

m2(k, t, `). Then |∂`H| ≥ |∂`LmEM(n, k, t, t)|.

However, for the case ` ≤ t we show that the smallest possible size of the `-th shadow of

large t-intersecting families on [n] is different than the formula in Theorem 6.3.4. Let

AK(n, k, t) =

{
A ∈

(
[n]

k

)
: [t] ⊂ A and [t+ 1, k + 1] ∩A 6= ∅

}
∪

⋃
i∈[t]

{[k + 1] \ {i}}

 .
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Notice that AK(n, k, t) and EM(n, k, t+ 2, t+ 1) are both t-intersecting,

|AK(n, k, t)| ∼ (k − t+ 1)

(
n

k − t− 1

)
,

|EM(n, k, t+ 2, t+ 1)| ∼ (t+ 2)

(
n

k − t− 1

)
.

Our next result is a finite version of Theorem 6.3.4.

Theorem 6.3.6. Let t ≥ 1, k ≥ 3, 1 ≤ ` < k, and n > (t+ 1)(k− t+ 1). Suppose that H ⊂
([n]
k

)
is t-intersecting and

|H| = m > m(n, k, t) =


max {|AK(n, k, t)|, |EM(n, k, t+ 2, t+ 1)|} , if t < k−1

2 ,

|EM(n, k, t+ 2, t+ 1)|, if t ≥ k−1
2 .

Then |∂`H| ≥ |∂`LmEM(n, k, t, t)|. In particular, if

|H| =
(
x− t
k − t

)
> m(n, k, t) (6.4)

for some x ∈ R. Then |∂`H| ≥
∑k−`

i=t−`
(
t
i

)(
x−t
k−`−i

)
. For 1 ≤ ` ≤ t the value of m(n, k, t) is tight

for t ≥ k−1
2 and is tight up to a constant multiplicative factor independent of n for t < k−1

2 .

Remarks.
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• Theorem 6.3.6 implies that for a t-intersecting family H ⊂
([n]
k

)
with large size,

|∂`H|
|H|

>

(
t

`

)
≥
(

2k−t
k−`
)(

2k−t
k

)
for 1 ≤ ` ≤ t with equality in the second inequality iff ` = t. Hence our bound is better

than that in Theorem 6.3.2 (as expected since our bound is best possible).

• For t < k−1
2 we will show in the last section that the lower bound for |H| in Theorem

6.3.6 can be improved slightly.

6.3.1.2 Frankl’s theorem

The matching number of H, denoted by ν(H), is the maximum number of pairwise disjoint

edges in H. Notice that ν(EM(n, k, s, 1)) ≤ s with equality iff n ≥ ks and

|EM(n, k, s, 1)| =
(
n

k

)
−
(
n− s
k

)
∼ s
(

n

k − 1

)
(n→∞).

The Erdős matching conjecture [59] says that for all n ≥ (s+1)k−1, if H ⊂
([n]
k

)
and ν(H) ≤ s,

then

|H| ≤ max

{(
(s+ 1)k − 1

k

)
,

(
n

k

)
−
(
n− s
k

)}
. (6.5)

When s = 1, Equation 6.5 follows from the Erdős–Ko–Rado theorem [69].

Theorem 6.3.7 (Erdős–Ko–Rado [69]). Let k ≥ 2 and n ≥ 2k, H ⊂
([n]
k

)
be an intersecting

family. Then H ≤
(
n−1
k−1

)
and when n > 2k equality holds iff H ∼= EKR(n, k).
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The Erdős matching conjecture is still open and the current record on this conjecture is due

to Frankl [93].

Theorem 6.3.8 (Frankl [93]). Let k ≥ 2 and n ≥ (2s+ 1)k− s, H ⊂
([n]
k

)
and ν(H) ≤ s. Then

H ≤
(
n
k

)
−
(
n−s
k

)
with equality iff H ∼= EM(n, k, s, 1).

If we take t = 1 in Theorem 6.3.2, then every intersecting family H ⊂
([n]
k

)
satisfies |∂H| ≥

|H|. Frankl generalized this as follows.

Theorem 6.3.9 (Frankl [92; 93]). Let n ≥ k ≥ 2 and H ⊂
([n]
k

)
. If ν(H) = s ≥ 1, then

|∂H| ≥ |H|
s

with equality iff H ∼=
([(s+1)k−1]

k

)
.

Theorem 6.3.9 is a crucial tool in the proof of Theorem 6.3.8 and any improvement in

Theorem 6.3.9 for small values of n could lead to a corresponding improvement in Theorem 6.3.8.

Our final result provides such an improvement (for large n) that is sharp if |H| is large.

Theorem 6.3.10. For every k ≥ 3 and every s ≥ 1 there exists c = c(k, s) such that the

following holds as n → ∞. Suppose that H ⊂
([n]
k

)
satisfies ν(H) ≤ s and |H| = m ≥

(1 + o(1))c
(
n
k−2

)
. Then

|∂H| ≥ |∂LmEM(n, k, s, 1)|.

In particular, if |H| =
(
x
k

)
−
(
x−s
k

)
≥ (1 + o(1))c

(
n
k−2

)
for some x ∈ R, then |∂H| ≥

(
x
k−1

)
.
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The families H above can have size as large as Θ(nk−1), so the point of Theorem 6.3.10

is that it applies to H that are quite a bit smaller. In fact, as we will show below, the order

of magnitude nk−2 is best possible for such a result and even the constant c is sharp in many

cases.

Our proof of Theorem 6.3.10 gives

c(k, s) =



3 if s = 1

(
2s+1

2

)
if k = 3

(
s+1

2

)
k if k ≥ 4, s ≥ 2.

(6.6)

On the other hand, the following construction shows that the lower bound for c(k, s) (given

by Equation 6.6) in Theorem 6.3.10 is tight for (k, s) if s = 1 or k = 3, and is tight up to a

constant factor for all other (s, k).

Let G = EM(n, k, 2s+1, 2) and m = |G| ∼
(

2s+1
2

)(
n
k−2

)
and let x ∈ R such that

(
x
k

)
−
(
x−s
k

)
=

m. Since
(
x
k

)
−
(
x−s
k

)
∼ s
(
x
k−1

)
, x = Θ(n

k−2
k−1 ). Notice that

s|∂G| −m = s

k−1∑
i=1

(
2s+ 1

i

)(
n− 2s− 1

k − 1− i

)
−

k∑
i=2

(
2s+ 1

i

)(
n− 2s− 1

k − i

)

= Θ(nk−3),
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and

s|∂LmEM(n, k, s, 1)| −m ≥ s
(

x

k − 1

)
−
((

x

k

)
−
(
x− s
k

))
= Θ(xk−2) = Θ(n

(k−2)2

k−1 ).

Since (k−2)2

k−1 > k−3, |∂LmEM(n, k, s, 1)| > |∂EM(n, k, 2s+1, 2)| for sufficiently large n. There-

fore, we obtain the following result.

Fact 6.3.11. For every k ≥ 3 and sufficiently large n there exists G ⊂
([n]
k

)
with ν(G) = s and

|G| = (1 + on(1))
(

2s+1
2

)(
n
k−2

)
such that |∂G| < |∂L|G|EM(n, k, s, 1)|.

It would be interesting to determine the minimum value of c(k, s) such that the conclusion

in Theorem 6.3.10 holds for all |H| > c(k, s)
(
n
k−2

)
and sufficiently large n.

6.3.2 Proofs

6.3.2.1 Extension of the k-cascade representation

In this section, we prove an extension of the well-known k-cascade representation of a

number. The k-cascade representation plays an important role in the Kruskal–Katona theorem

and the extension that we prove plays an analogous role for our theorems. As a convention, let(
a
b

)
= 0 if b < 0 or a < b, and let

(
a
0

)
= 1 for all a ≥ 0.

For an r-graph H and a vertex set S that is disjoint from V (H) define

H+ S = {A ∪ S : A ∈ H} .
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For every i ∈ N let î = i+ 1.

Lemma 6.3.12. Let n ≥ k ≥ t ≥ 0 and s ≥ t ≥ 0. Then the following hold.

(a) |EM(n, k, s, t)| =
(
n
k

)
−
∑t−1

j=0

(
s
j

)(
n−s
k−j
)
.

(b) For every m ≥ 1 there exist integers ak > ak−1 > · · · > ah ≥ h ≥ max{t, 1} such that

LmEM(n, k, s, t) = EM(ak, k, s, t) ∪
k−1⋃
i=h

(EM(ai, i, s, t) + {âi+1, . . . , âk})

Proof. (a) is clear. So let us consider (b).

First, it follows from the definition that the colex order of EM(n′, k, s, t) is the initial segment

of the colex on EM(n, k, s, t) for all n′ < n. Let F = LmEM(n, k, s, t). Without loss of generality

we may assume that F 6= EM(n′, k, s, t) for all n′ ≤ n since otherwise we can let h = k and ak =

n′ and we are done. So there exists ak such that EM(ak, k, s, t) ⊂ F ⊂ EM(ak + 1, k, s, t) and

hence every set in F\EM(ak, k, s, t) contains ak+1. Therefore, F = EM(ak, k, s, t)∪(Fk + {âk})

for some Fk ⊂ EM(ak, k − 1, s, t).

Let m′ = |Fk|. Then it follows from the definition of colex order that Fk = Lm′EM(ak, k −

1, s, t). So we can repeat the argument above to show that there exists ak−1 such that Fk =

EM(ak−1, k − 1, s, t) ∪ (Fk−1 + {âk−1}). This means that

F = EM(ak, k, s, t) ∪ (EM(ak−1, k − 1, s, t) + {âk}) ∪ (Fk−1 + {âk, âk−1}) .

Inductively, one will get a decomposition of F as in Lemma 6.3.12.
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Lemma 6.3.13. For every integers m ≥ 1, there exists a unique representation of m in the

form

m =

k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
,

where ak > · · · > ah ≥ h ≥ max{t, 1} are integers.

Proof. If t = 0, then this is just the k-cascade representation of m. So we may assume that

t ≥ 1. Let n ∈ N be sufficiently large such that m ≤ |EM(n, k, s, t)|. Then the existence of such

a representation follows from Lemma 6.3.12 since

m = |LmEM(n, k, s, t)| =
k∑
i=h

|EM(ai, i, s, t)| =
k∑
i=h

(ai
i

)
−

t−1∑
j=0

(
s

j

)(
ai − s
i− j

)
=

k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
.

Next, we prove the uniqueness of such representation of m. Suppose that there exists

ak > · · · > ah ≥ h ≥ t and bk > · · · > bh′ ≥ h′ ≥ t such that

k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
= m =

k∑
i=h′

(
bi
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h′

(
bi − s
i− j

)
. (6.7)
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Without loss of generality we may assume that ak 6= bk since otherwise we can consider m′ =

m−
((

ak
i

)
−
∑t−1

j=0

(
s
j

)(
ak−s
i−j
))

instead. Let

Fa = EM(ak, k, s, t) ∪
k−1⋃
i=h

(EM(ai, i, s, t) + {âi+1, . . . , âk})

and

Fb = EM(bk, k, s, t) ∪
k−1⋃
i=h′

(
EM(bi, i, s, t) + {b̂i+1, . . . , b̂k}

)
.

Then

|Fa| =
k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
,

and

|Fb| =
k∑

i=h′

(
bi
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h′

(
bi − s
i− j

)
.

Without loss of generality we may assume that ak ≥ bk + 1. However, notice that in this case

Fb is a proper subset of Fa, since every set of Fb has maximum element at most bk + 1 ≤ ak.

This contradicts Equation 6.7.
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6.3.2.2 Shifting

For every A ∈ H and 1 ≤ i < j ≤ n define

Sij(A) =


(A \ {j}) ∪ {i}, if j ∈ A, i 6∈ A, and (A \ {j}) ∪ {i} 6∈ H,

A, otherwise.

Let Sij(H) = {Sij(A) : A ∈ H} and call H shifted if H = Sij(H) for all 1 ≤ i < j ≤ n.

Fact 6.3.14 (see [91]). The following statements hold for all H ⊂
([n]
k

)
and all 1 ≤ i < j ≤ n

and all 1 ≤ t, ` ≤ k − 1.

• |H| = |Sij(H)|.

• ∂`Sij(H) ⊂ Sij(∂`H) and in particular, |Sij(∂`H)| ≥ |∂`Sij(H)|

• ν(Sij(H)) ≤ ν(H).

• If H is t-intersecting, then Sij(H) is also t-intersecting.

6.3.2.3 Main Lemma

Fact 6.3.14 shows that it suffices to consider shifted families in all proofs in this paper. The

main technical statement in this work is Lemma 6.3.16 below which is a generalization of the

Kruskal-Katona theorem. For two families H1 and H2 we write H1 ⊂ H2 if H1 is isomorphic

to a subgraph of H2.

Given a family H, let H(1) = {A \ {1} : 1 ∈ A ∈ H} and H(1̄) = {A ∈ H : 1 6∈ A}. It is easy

to see that if H is shifted, then ∂H(1̄) ⊂ H(1) and hence |∂H| = |H(1)|+ |∂H(1)|.
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Lemma 6.3.15. Let n ≥ k ≥ t ≥ 0 and s ≥ t ≥ 0. Suppose that

m =
k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)

for integers ak > · · · > ah ≥ max{t, 1}. Then for 1 ≤ ` ≤ k − 1

|∂`LmEM(n, k, s, t)| =
k∑
i=h

(
ai
i− `

)
−
t−1−`∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− `− j

)
.

Proof. Fix 1 ≤ ` ≤ k − 1. By Lemma 6.3.12,

LmEM(n, k, s, t) = EM(ak, k, s, t) ∪
k−1⋃
i=h

(EM(ai, i, s, t) + {âi+1, . . . , âk}) .

Notice that

∂EM(ak, k, s, t) = EM(ak, k − 1, s, t− 1),

and for every h ≤ i ≤ k − 1 we have

∂ (EM(ai, i, s, t) + {âi+1, . . . , âk}) = (EM(ai, i− 1, s, t− 1) + {âi+1, . . . , âk})∪
k⋃

j=i+1

(EM(ai, i, s, t) + {âi+1, . . . , âk} \ {âj}) .
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On the other hand, for all h ≤ i < j ≤ k − 2 since aj > ai ,

EM(ai, i, s, t) + {âi+1, . . . , âk} \ {âj} ⊂ EM(aj , j − 1, s, t− 1) + {âj+1, . . . , âk}.

For all h ≤ i ≤ k − 1 since ak > ai,

EM(ai, i, s, t) + {âi+1, . . . , âk} \ {âk} ⊂ EM(ak, k − 1, s, t− 1).

Therefore,

∂LmEM(n, k, s, t) =
k⋃
i=h

(EM(ai, i− 1, s, t− 1) + {âi+1, . . . , âk}) ,

and inductively we obtain for all 1 ≤ ` ≤ k − 1

∂`LmEM(n, k, s, t) =

k⋃
i=h

(EM(ai, i− `, s, t− `) + {âi+1, . . . , âk}) .

Therefore,

|∂`LmEM(n, k, s, t)| =
k∑
i=h

|EM(ai, i− `, s, t− `)|

=

k∑
i=h

( ai
i− `

)
−
t−1−`∑
j=0

(
s

j

)(
ai

i− `− j

)
=

k∑
i=h

(
ai
i− `

)
−
t−1−`∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− `− j

)
.
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This completes the proof of Lemma 6.3.15.

Lemma 6.3.16. Let s ≥ t ≥ 0. If H ⊂ EM(n, k, s, t) and |H| = m, then

|∂H| ≥ |∂LmEM(n, k, s, t)|.

Proof. By Lemma 6.3.13, there exists ak > · · · > ah ≥ max{t, 1} such that

m =

k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
.

Then, by Lemma 6.3.15 it suffices to show that

|∂H| ≥
k∑
i=h

(
ai
i− 1

)
−

t−2∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− 1− j

)
.

We prove this statement by induction on k, s, t. When s = 0 or k = 1 the statement is trivially

true. When t = 0 the statement follows from the Kruskal–Katona theorem. So we may assume

that s ≥ t ≥ 1 and k ≥ 2.

Claim 6.3.17. |H(1)| ≥
∑k

i=h

(
ai−1
i−1

)
−
∑t−2

j=0

(
s−1
j

)∑k
i=h

(
ai−s
i−1−j

)
.
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Proof. Suppose not. Then

|H(1̄)| = |H| − |H(1)|

>

k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
−

 k∑
i=h

(
ai − 1

i− 1

)
−

t−2∑
j=0

(
s− 1

j

) k∑
i=h

(
ai − s
i− 1− j

)
=

k∑
i=h

(
ai
i

)
−

k∑
i=h

(
ai − 1

i− 1

)
−

t−1∑
j=0

((
s

j

)
−
(
s− 1

j − 1

)) k∑
i=h

(
ai − s
i− j

)

=

k∑
i=h

(
ai − 1

i

)
−

t−1∑
j=0

(
s− 1

j

) k∑
i=h

(
ai − s
i− j

)
.

Since H(1̄) ⊂ EM(n, k, s− 1, t), by the induction hypothesis

|∂H(1̄)| >
k∑
i=h

(
ai − 1

i− 1

)
−

t−2∑
j=0

(
s− 1

j

) k∑
i=h

(
ai − s
i− 1− j

)
> |H(1)|,

which contradicts the assumption that H is shifted.

Since H(1) ⊂ EM(n, k − 1, s− 1, t− 1), by the induction hypothesis and Claim 6.3.17,

|∂H| ≥ |H(1)|+ |∂H(1)|

≥
k∑
i=h

(
ai − 1

i− 1

)
−

t−2∑
j=0

(
s− 1

j

) k∑
i=h

(
ai − s
i− 1− j

)

+

k∑
i=h

(
ai − 1

i− 2

)
−

t−3∑
j=0

(
s− 1

j

) k∑
i=h

(
ai − s
i− 2− j

)

=

k∑
i=h

(
ai
i− 1

)
−

t−2∑
j=0

((
s− 1

j

)
+

(
s− 1

j − 1

)) k∑
i=h

(
ai − s
i− 1− j

)

=
k∑
i=h

(
ai
i− 1

)
−

t−2∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− 1− j

)
.
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This completes the proof of Lemma 6.3.16.

Corollary 6.3.18. Let s ≥ t ≥ 0 and 1 ≤ ` ≤ k − 1. Suppose that H ⊂ EM(n, k, s, t) and

|H| = m. Then |∂`H| ≥ |∂`LmEM(n, k, s, t)|.

Proof. Similar to the proof of Lemma 6.3.16, it suffices to show that if for some integers ak >

· · · > ah ≥ h ≥ max{t, 1}

|H| =
k∑
i=h

(
ai
i

)
−

t−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− j

)
,

then

|∂`H| ≥
k∑
i=h

(
ai
i− `

)
−
t−1−`∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− `− j

)
.

We proceed by induction on `. When ` = 1, this is Lemma 6.3.16. So we may assume that

` ≥ 2. By the induction hypothesis

|∂`−1H| ≥
k∑
i=h

(
ai

i− `+ 1

)
−

t−∑̀
j=0

(
s

j

) k∑
i=h

(
ai − s

i− `+ 1− j

)
.

Since ∂`−1H ⊂ EM(n, k, s, t− `+ 1), by Lemma 6.3.16,

|∂`H| = |∂∂`−1H| ≥
k∑
i=h

(
ai
i− `

)
−
t−`−1∑
j=0

(
s

j

) k∑
i=h

(
ai − s
i− `− j

)
.

This completes the proof of Corollary 6.3.18.
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The same induction argument as above gives the following technically simpler version of

Corollary 6.3.18.

Lemma 6.3.19 (Simplified version of Lemma 6.3.16). Let s ≥ t ≥ 0 and 1 ≤ ` ≤ k − 1.

Suppose that H ⊂ EM(n, k, s, t) and |H| =
(
x
k

)
−
∑t−1

j=0

(
s
j

)(
x−s
k−j
)

for some x ∈ R. Then |∂`H| ≥(
x
k−`
)
−
∑t−1−`

j=0

(
s
j

)(
x−s
k−`−j

)
.

Let

HM(n, k, s, t) =

{
A ∈

(
[n]

k

)
: |A ∩ [s− 1]| ≥ 1

}
∪{

A ∈
(

[n]

k

)
: s ∈ A and |A ∩ [s+ 1, s+ t]| ≥ 1

}
.

Note that there is no constraint on the relation between s and t for HM(n, k, s, t).

Similar to Lemmas 6.3.12, 6.3.13, and 6.3.15 we have the following result for HM(n, k, s, t).

Lemma 6.3.20. Let n ≥ k. Then the following hold.

(a) |HM(n, k, s, t)| =
(
n
k

)
−
(
n−s
k

)
−
(
n−s−t
k−1

)
and |∂HM(n, k, s, t)| =

(
n
k−1

)
.

(b) For every m ≤ |HM(n, k, s, t)| there exist integers ak > · · · > ah ≥ h ≥ 1 such that

LmHM(n, k, s, t) = HM(ak, k, s, t) ∪
k−1⋃
i=h

(HM(ai, i, s, t) + {âi+1, . . . , âk}) .
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(c) For every m ≥ 1 there exists a unique sequence of integers ak > · · · > ah ≥ h ≥ 1 such

that

m =

k∑
i=h

(
ai
i

)
−

k∑
i=h

(
ai − s
i

)
−

k∑
i=h

(
ai − s− t
i− 1

)
.

(d) If m is given by the equation above, then

|∂LmHM(n, k, s, t)| =
k∑
i=h

(
ai
i− 1

)
.

Lemma 6.3.21. If H ⊂ HM(n, k, s, t) and |H| = m, then |∂H| ≥ |∂LmHM(n, k, s, t)|. In

particular, if |H| =
∑k

i=h

(
ai
i

)
−
∑k

i=h

(
ai−s
i

)
−
∑k

i=h

(
ai−s−t
i−1

)
for some integers ak > · · · > ah ≥

h ≥ 1, then |∂H| ≥
∑k

i=h

(
ai
i−1

)
.

Proof. Let ak > · · · > ah ≥ h ≥ 1 be integers such that

m =
k∑
i=h

(
ai
i

)
−

k∑
i=h

(
ai − s
i

)
−

k∑
i=h

(
ai − s− t
i− 1

)
.

Then by Lemma 6.3.20, it suffices to show

|∂H| ≥
k∑
i=h

(
ai
i− 1

)
= |∂LmHM(n, k, s, t)|.
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We proceed by induction on s and t. When s = 0, this is trivially true. When t = 0, we

have HM(n, k, s, 0) = EM(n, k, s, 1), so the conclusion follows from Lemma 6.3.16. So we may

assume that s ≥ 1 and t ≥ 1.

Claim 6.3.22. |H(1)| ≥
∑k

i=h

(
ai−1
i−1

)
Proof. Suppose not. Then

|H(1̄)| = |H| − |H(1)| >
k∑
i=h

(
ai − 1

i

)
−

k∑
i=h

(
ai − s
i

)
−

k∑
i=h

(
ai − s− t
i− 1

)
.

Since H(1̄) ⊂ HM(n, k, s− 1, t), by the induction hypothesis |∂H(1̄)| >
∑k

i=h

(
ai−1
i−1

)
> |H(1)|,

which contradicts the assumption that H is shifted.

Now, by Claim 6.3.22 and the Kruskal-Katona theorem,

|∂H| ≥ |H(1)|+ |∂H(1)| ≥
k∑
i=h

(
ai − 1

i− 1

)
+

k∑
i=h

(
ai − 1

i− 2

)
=

k∑
i=h

(
ai
i− 1

)
.

This completes the proof of Lemma 6.3.21.

Similarly, the same induction argument as above gives the following technically simpler

version of Lemma 6.3.21.

Lemma 6.3.23 (Simplified version of Lemma 6.3.21). Suppose that H ⊂ HM(n, k, s, t) and

|H| =
(
x
k

)
−
(
x−s
k

)
−
(
x−s−t
k−1

)
for some x ∈ R. Then |∂H| ≥

(
x
k−1

)
.
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6.3.2.4 Proof of Theorem 6.3.3

The proof of Theorem 6.3.3 uses the following structural theorem for intersecting families.

For 1 ≤ t ≤ k − 1 let

HM(n, k, t) = {A ∈ EKR(n, k) : A ∩ [2, k] 6= ∅ or [k + 1, k + t] ⊂ A}∪
t⋃
i=1

{{2, . . . , k, k + i}}.

Note that |HM(n, k, 2)| =
(
n−1
k−1

)
−
(
n−k
k−1

)
+
(
n−k−2
k−3

)
+ 2 and HM(n, k, 1) is the extremal config-

uration in the Hilton–Milner theorem on nontrivial intersecting families.

Theorem 6.3.24 (Han–Kohayakawa [119]). Let k ≥ 3 and n > 2k and let H be an n-vertex

intersecting k-graph. If H 6⊂ EKR(n, k) and H 6⊂ HM(n, k, 1) and for k = 3 H 6⊂ EM(n, 3, 3, 2)

as well, then |H| ≤ |HM(n, k, 2)|.

Proof of Theorem 6.3.3. By the assumption on the size of H and Theorem 6.3.24, for k ≥ 4

either H ⊂ EKR(n, k) or H ⊂ HM(n, k, 1), and for k = 3 we have H ⊂ EKR(n, 3).

Suppose that k = 3. Since H ⊂ EKR(n, 3) = EM(n, 3, 1, 1), by Corollary 6.3.18, |∂`H| ≥

|∂`LmEKR(n, 3)| for 1 ≤ ` ≤ 2.

Now suppose that k ≥ 4. Let ak > · · · > ah ≥ h ≥ 1 be integers such that |H| =∑k
i=h

(
ai
i

)
−
∑k

i=h

(
ai−1
i

)
. If H ⊂ EKR(n, k) = EM(n, k, 1, 1), then by Corollary 6.3.18, |∂`H| ≥

|∂`LmEM(n, k, 1, 1)| = |∂`LmEKR(n, k)| and we are done. So we may assume that H ⊂

HM(n, k, 1) and we are going to show that |∂`H| >
∑k

i=h

(
ai
i−`
)

= |∂`LmEKR(n, k)| in this

case.
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Suppose that |∂`H| ≤
∑k

i=h

(
ai
i−`
)
. Let H′ = H \ {{2, . . . , k + 1}} and note that |∂`H′| ≤

|∂`H| ≤
∑k

i=h

(
ai
i−`
)
. Applying the the contrapositive of the Kruskal-Katona theorem to H′ we

obtain |∂H′| ≤
∑k

i=h

(
ai
i−1

)
. On the other hand, since H ⊂ HM(n, k, 1), H′ ⊂ HM(n, k, 1) \

{{2, . . . , k + 1}} = HM(n, k, 1, k). So applying the contrapositive of Lemma 6.3.21 to H′ we

obtain

|H| ≤ |H′|+ 1 ≤
k∑
i=h

(
ai
i

)
−

k∑
i=h

(
ai − 1

i

)
−

k∑
i=h

(
ai − 1− k
i− 1

)
+ 1

=
k∑
i=h

(
ai − 1

i− 1

)
−

k∑
i=h

(
ai − 1− k
i− 1

)
+ 1.

Claim 6.3.25. ak ≥ 2k and if ak = 2k then ak−1 = 2k − 1.

Proof. First, suppose that ak ≤ 2k − 1. Then

|H| ≤
k∑
i=h

(
ai − 1

i− 1

)
−

k∑
i=h

(
ai − 1− k
i− 1

)
+ 1

≤
k∑
i=1

(
k + i− 2

i− 1

)
−

k∑
i=1

(
i− 2

i− 1

)
+ 1

=

(
2k − 1

k − 1

)
+ 1 <

(
2k

k − 1

)
−
(

k

k − 1

)
−
(
k − 1

k − 2

)
+ 3,

which contradicts the assumption that |H| > |HM(n, k, 2)| and n > 2k. Therefore, ak ≥ 2k.



356

Now suppose that ak = 2k and ak−1 ≤ 2k − 2. Then,

|H| ≤
k∑
i=h

(
ai − 1

i− 1

)
−

k∑
i=h

(
ai − 1− k
i− 1

)
+ 1

≤
(

2k − 1

k − 1

)
+
k−1∑
i=1

(
k + i− 2

i− 1

)
−

k∑
i=1

(
i− 2

i− 1

)

=

(
2k − 1

k − 1

)
+

(
2k − 2

k − 2

)
<

(
2k

k − 1

)
−
(

k

k − 1

)
−
(
k − 1

k − 2

)
+ 3,

where the strict inequality uses k ≥ 4 and n > 2k. This contradicts the assumption that

|H| > |HM(n, k, 2)|.

Claim 6.3.25 implies that
∑k

i=h

(
ai−1−k
i−1

)
− 1 > 0. Therefore,

|H| ≤
k∑
i=h

(
ai − 1

i− 1

)
−

k∑
i=h

(
ai − 1− k
i− 1

)
+ 1 <

k∑
i=h

(
ai − 1

i− 1

)
,

contradicts the assumption that |H| =
∑k

i=h

(
ai
i

)
−
∑k

i=h

(
ai−1
i

)
=
∑k

i=h

(
ai−1
i−1

)
. Therefore, if

H ⊂ HM(n, k, 1), then |∂`H| >
∑k

i=h

(
ai
i−`
)
, and this completes the proof of Theorem 6.3.3.

6.3.2.5 Proof of Theorem 6.3.6

In this section we prove Theorem 6.3.6. We need the following theorem for t-intersecting

families.
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Theorem 6.3.26 (Ahlswede–Khachatrian [2]). Let t ≥ 1, k ≥ 3, and n > (t + 1)(k − t + 1).

Suppose that H ⊂
([n]
k

)
is a t-intersecting family and

|H| = m >


max {|AK(n, k, t)|, |EM(n, k, t+ 2, t+ 1)|} , if t < k−1

2 ,

|EM(n, k, t+ 2, t+ 1)|, if t ≥ k−1
2 .

Then H ⊂ EM(n, k, t, t).

Proof of Theorem 6.3.6. Suppose H is given as in Theorem 6.3.6. By Theorem 6.3.26, H ⊂

EM(n, k, t, t) and by Corollary 6.3.18, we have |∂`H| ≥ |∂`LmEM(n, k, t, t)|.

We now show that the value of m(n, k, t) in the theorem cannot be reduced for t ≥ k−1
2

and is tight up to a constant multiplicative factor for t < k−1
2 . Indeed, we would just take

H = EM(n, k, t+ 2, t+ 1) and hence it suffices to prove the following.

Fact 6.3.27. Let n be sufficiently large and m = |EM(n, k, t+ 2, t+ 1)|. Then

|∂`EM(n, k, t+ 2, t+ 1)| < |∂`LmEM(n, k, t, t)| for all 1 ≤ ` ≤ t.

In particular, for 1 ≤ ` ≤ t the lower bound m(n, k, t) for |H| in Theorem 6.3.6 cannot be

reduced to be less than |EM(n, k, t+ 2, t+ 1)| ∼ (t+ 2)
(

n
k−t−1

)
.

Note that when t < k−1
2 Fact 6.3.27 implies that the constant multiplicative factor is at

most |AK(n, k, t)|/|EM(n, k, t+ 2, t+ 1)| ∼ k−t+1
t+2 which is independent of n.
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Let x ∈ R such that
(
x−t
k−t
)

= |EM(n, k, t + 2, t + 1)| = (t + 2)
(
n−t−2
k−t−1

)
+
(
n−t−2
k−t−2

)
, then

x = Θ(n
k−t−1
k−t ). Applying Lemma 6.3.15 to EM(n, k, t, t), we obtain

|∂`LmEM(n, k, t, t)| ≥
k−∑̀
i=t−`

(
t

i

)(
x− t

k − `− i

)

=

(
t

t− `

)(
x− t
k − t

)
+ (1 + o(1))

(
t

t− `+ 1

)(
x− t

k − t− 1

)
= (t+ 2)

(
t

t− `

)(
n

k − t− 1

)
+ Θ(n

(k−t−1)2

k−t ),

and

|∂`EM(n, k, t+ 2, t+ 1)| =
k−∑̀

i=t+1−`

(
t+ 2

i

)(
n− t+ 2

k − `− i

)

=

(
t+ 2

t+ 1− `

)(
n

k − t− 1

)
+ Θ(nk−t−2).

If ` < t, then

|∂`LmEM(n, k, t, t)| ∼ (t+ 2)

(
t

t− `

)(
n

k − t− 1

)

and

|∂`EM(n, k, t+ 2, t+ 1)| ∼
(

t+ 2

t+ 1− `

)(
n

k − t− 1

)
.

Since
(
t+2
t+1−`

)
< (t+ 2)

(
t
t−`
)

for ` < t,

|∂`EM(n, k, t+ 2, t+ 1)| < |∂`LmEM(n, k, t, t)|
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for large n.

If ` = t, then

|∂`LmEM(n, k, t, t)| ∼ (t+ 2)

(
n

k − t− 1

)
+ Θ(n

(k−t−1)2

k−t )

and

|∂`EM(n, k, t+ 2, t+ 1)| ∼ (t+ 2)

(
n

k − t− 1

)
+ Θ(nk−t−2).

Since (k−t−1)2

k−t > k − t− 2,

|∂t+1EM(n, k, t+ 2, t+ 1)| < |∂t+1LmEM(n, k, t, t)|

for large n. Consequently, Fact 6.3.27 holds and the proof is complete.

6.3.2.6 Proof of Theorem 6.3.10

Before proving Theorem 6.3.10 we need some structure theorems for a family with large size

and a given matching number.
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Definition 6.3.28. Let n ≥ sk+1, k ≥ 3, and s ≥ 1. Let v0, . . . , vs−1 ∈ [n] be distinct vertices,

T1, . . . , Ts ⊂ [n] be pairwise disjoint k-sets, and vi ∈ Ti for all 1 ≤ i ≤ s− 1, and v0 6∈ Ti for all

1 ≤ i ≤ s. Let

PF(n, k, s) = {T1, . . . , Ts}∪A ∈
(

[n]

k

)
: ∃0 ≤ i ≤ s− 1 such that xi ∈ A and |A ∩

s⋃
j=i+1

Ti| ≥ 1

 .

Notice that |PF(n, k, s)| ∼ k
(
s+1

2

)(
n
k−2

)
.

Theorem 6.3.29 (Kostochka–Mubayi [148]). For every k ≥ 3, s ≥ t ≥ 2, there exists n0 such

that the following holds for all n ≥ n0. Suppose that H ⊂
([n]
k

)
satisfies ν(H) = s and

|H| >


|EM(n, 3, s− t, 1)|+ |EM(n− s+ t, 3, 2s+ 1, 2)| if k = 3,

|EM(n, k, s− t, 1)|+ |PF(n− s+ t, k, t)| if k ≥ 4.

Then there exists X ⊂ [n] with |X| = s− t+ 1 such that ν(H −X) = t− 1. The bound on |H|

is tight. In particular, if

|H| >


|EM(n, 3, 2s+ 1, 2)| for k = 3,

|PF(n, k, s)| for k ≥ 4,

then there exists v ∈ [n] such that ν(H − v) = s− 1.
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Note that the proof of Theorem 6.3.29 was not included in [148], but one can easily prove

it using results in [96] (Theorems 4.1 and 4.2 in [96]).

We also need the following structure theorems for intersecting families. Let

• H3
0 (n) =

{
A ∈

(
[n]
3

)
: |A ∩ [3]| ≥ 2

}
.

• H3
1 (n) =

{
A ∈

(
[n]
3

)
: 1 ∈ A and |A ∩ {2, 3, 4}| ≥ 1

}
∪ {234}.

• H3
2 (n) =

{
A ∈

(
[n]
3

)
: 1 ∈ A and |A ∩ {2, 3}| ≥ 1

}
∪ {234, 235, 145}.

• H3
3 (n) =

{
A ∈

(
[n]
3

)
: {1, 2} ∈ A

}
∪ {134, 135, 145, 234, 235, 245}.

• H3
4 (n) =

{
A ∈

(
[n]
3

)
: {1, 2} ∈ A

}
∪ {134, 156, 235, 236, 245, 246}.

• H3
5 (n) =

{
A ∈

(
[n]
3

)
: {1, 2} ∈ A

}
∪ {134, 156, 136, 235, 236, 246}.

• For k ≥ 4 and 0 ≤ i ≤ 5, Hk
i (n) =

{
A ∈

([n]
k

)
: ∃B ∈ H3

i (n) such that B ⊂ A
}

.

Fact 6.3.30. The following holds for all n ≥ k ≥ 3.

• |Hk
0 (n)| = 3

(
n−3
k−2

)
+
(
n−3
k−3

)
< 3
(
n
k−2

)
− 2
(
n
k−3

)
.

• |Hk
1 (n)| = 3

(
n−4
k−2

)
+ 4
(
n−4
k−3

)
+
(
n−4
k−4

)
< 3
(
n
k−2

)
− 2
(
n
k−3

)
.

• max{|Hk
i (n)| : 2 ≤ i ≤ 5} ≤ 2

(
n
k−2

)
.

Definition 6.3.31. Let n ≥ 2k and k ≥ 3. Let Y = [2, k + 1], Z = [k + 2, 2k]. The n-vertex

k-graph PF(n, k) consists of all k-subsets of [n] containing a member of the family

G = {A : 1 ∈ A and |A ∩ Y | = 1 and |A ∩ Z| = 1}∪

{Y, {1, k, k + 1}, Z ∪ {k}, Z ∪ {k + 1}} .
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Note that |PF(n, k)| = O(nk−3).

Theorem 6.3.32 (Kostochka–Mubayi [148]). Let k ≥ 4 be fixed and n be sufficiently large.

Then there is C > 0 such that for every intersecting n-vertex k-graph H with |H| > |PF(n, k)| =

O(nk−3), one can remove from H at most Cnk−4 edges so that the resulting k-graph H′ is

contained in one of Hk
0 (n), . . . ,Hk

5 (n),EKR(n, k).

For intersecting 3-graphs there is a stronger result.

Theorem 6.3.33 (Kostochka–Mubayi [148]). Let H be an intersecting 3-graph and n = |V (H)| ≥

6. If τ(H) ≤ 2, then H is contained in one of EKR(n, 3), H3
1 (n), . . . ,H3

5 (n).

The following result shows that the size of an intersecting 3-graph H with τ(H) ≥ 3 is

bounded by a constant.

Theorem 6.3.34 (Frankl [89]). Let k ≥ 3 and n be sufficiently large. Then every intersecting

n-vertex k-graph H with τ(H) ≥ 3 satisfies |H| ≤ |PF(n, k)|. Moreover, if k ≥ 4, then equality

holds only if H ∼= PF(n, k).

Now we are ready to prove Theorem 6.3.10.

Proof of Theorem 6.3.10. Let n be sufficiently large and c = c(k, s) be given by Equation 6.6.

We may assume thatH is shifted and ν(H) = s. For every v ∈ [n] let dH(v) = |{A ∈ H : v ∈ A}|,

and let ∆ = max{dH(v) : v ∈ [n]}. Suppose that m =
∑k

i=h

(
ai
i

)
−
∑k

i=h

(
ai−s
i

)
for some integers

ak > · · · > ah ≥ h ≥ 1. Then by Lemma 6.3.15, it suffice to show that

|∂H| ≥
k∑
i=h

(
ai
i− 1

)
= |∂LmEM(n, k, s, 1)|.
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Note that ak →∞ as n→∞ and so m ∼ s
(
ak−1
k−1

)
.

Claim 6.3.35. ∆ ≤
∑k

i=h

(
ai−1
i−1

)
= (1 + o(1))ms .

Proof. Suppose that there exists v ∈ [n] with dH(v) >
∑k

i=h

(
ai−1
i−1

)
. Let H(v) = {A \ {v} : v ∈

A ∈ H}. Then by the Kruskal–Katona theorem,

|∂H| ≥ |H(v)|+ |∂H(v)| >
k∑
i=h

(
ai − 1

i− 1

)
+

k∑
i=h

(
ai − 1

i− 2

)
=

k∑
i=h

(
ai
i− 1

)
,

and we are done.

We are going to use Theorem 6.3.29 and Claim 6.3.35 to define a sequence of distinct

vertices v1, . . . , vs−1 and a sequence of k-graphs H1, . . . ,Hs−1 such that ν(Hi) = s − i and

|Hi| > (1− o(1)) s−is m for all 1 ≤ i ≤ s− 1. Since H is shifted, we may assume that vi = i for

1 ≤ i ≤ s− 1.

First, by the assumption on the size of H and Theorem 6.3.29, there exists v1 ∈ [n] such

that H1 := H − v1 satisfies ν(H1) = s − 1. By Claim 6.3.35, dH(v1) < (1 + o(1))m/s, so

|H1| > (1− o(1)) s−1
s m.

Now suppose that we have defined Hi for some 1 ≤ i ≤ s − 2 such that ν(Hi) = s − i and

|Hi| > (1− o(1)) s−is m. Since

|Hi| > (1− o(1))
s− i
s

m ≥ s− i
s

c

(
n

k − 2

)
≥


|EM(n, 3, 2(s− i) + 1, 2)|, for k = 3,

|PF(n, k, s− i)|, for k ≥ 4,
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by Theorem 6.3.29, there exists vi+1 ∈ [n] such that Hi+1 := Hi − vi+1 satisfies ν(Hi+1) =

s− i− 1. By Claim 6.3.35, |Hi+1| > (1− o(1)) s−i−1
s m.

Note that Hs−1 satisfies ν(Hs−1) = 1 and

|Hs−1| > (1− o(1))
1

s
m ≥ 1

s
c

(
n

k − 2

)
≥ 3

(
n

k − 2

)
> |PF(n, k)|.

If k = 3, then by Theorem 6.3.34, τ(Hs−1) ≤ 2. Therefore, by Theorem 6.3.33, H is

contained in one of EKR(n, 3), H3
1 (n), . . . ,H3

5 (n). Since |Hs−1| > 3n and by Fact 6.3.30,

max0≤i≤5{|H3
i |} ≤ 3n − 8, we must have H ⊂ EKR(n, 3) = EM(n, 3, 1, 1). Note that Hs−1

is obtained from H by removing s − 1 vertices, so H ⊂ EM(n, 3, s, 1). Therefore, by Lemma

6.3.16, |∂H| ≥ |∂LmEM(n, 3, s, 1)| and we are done.

Now we may assume that k ≥ 4. Then, by Theorem 6.3.32, one can remove at most Cnk−4

edges from Hs−1 such that the resulting k-graph H′ is contained in one of Hk
0 (n), . . . ,Hk

5 (n),

EKR(n, k). Note that |H′| ≥ |Hs−1|−Cnk−4 > 3
(
n
k−2

)
−
(
n
k−3

)
and by Fact 6.3.30, max0≤i≤5{|Hk

i |} <

3
(
n
k−2

)
− 2
(
n
k−3

)
, so H′ ⊂ EKR(n, k) = EM(n, k, 1, 1). Here we need n to be sufficient large so

that Cnk−4 <
(
n
k−3

)
.

Note that Hs−1 is obtained from H by removing s − 1 vertices. If Hs−1 ⊂ EM(n, k, 1, 1),

then H ⊂ EM(n, k, s, 1) and by Lemma 6.3.16 we are done. So we may assume that Hs−1 6⊂

EM(n, k, 1, 1), i.e. Hs−1 \H′ 6= ∅. Let A ∈ Hs−1 \H′ and since Hs−1 is shifted, we may assume

that A = {s+ 1, . . . , s+ k}. Since Hs−1 is intersecting, every edge in H′ must have nonempty
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intersecting with A. So H′ ⊂ HM(n, k, 1, k). This implies that one can remove at most Cnk−4

edges from H such that the resulting k-graph H′′ satisfies H′′ ⊂ HM(n, k, s, k).

Let y ∈ R satisfy |H′′| =
(
y
k

)
−
(
y−s
k

)
−
(
y−s−k
k−1

)
. Then by Lemma 6.3.23, |∂H| ≥ |∂H′′| ≥(

y
k−1

)
. Let x ∈ R, ak, . . . , ah ∈ N such that ak > · · · > ah ≥ h ≥ 1 and |H| =

(
x
k

)
−
(
x−s
k

)
=∑k

i=h

(
ai
i

)
−
∑k

i=h

(
ai−s
i

)
. It is easy to see that x ≤ ak + 1.

Claim 6.3.36. y > x+ 1.

Proof. Suppose not. Then

(
x+ 1

k

)
−
(
x+ 1− s

k

)
−
(
x+ 1− s− k

k − 1

)
≥
(
y

k

)
−
(
y − s
k

)
−
(
y − s− k
k − 1

)
≥
(
x

k

)
−
(
x− s
k

)
− Cnk−4.

Since |H| ≥ c
(
n
k−2

)
, x = Ω(n

k−2
k−1 ). Therefore,

(
x+ 1

k

)
−
(
x+ 1− s

k

)
−
(
x+ 1− s− k

k − 1

)
=

(
x

k

)
−
(
x− s
k

)
+

(
x

k − 1

)
−
(
x− s
k − 1

)
−
(
x+ 1− s− k

k − 1

)
<

(
x

k

)
−
(
x− s
k

)
− 1

2

(
x− s− k
k − 1

)
<

(
x

k

)
−
(
x− s
k

)
− Cnk−4,

a contradiction. This completes the proof of Claim 6.3.36.
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By Claim 6.3.36,

|∂H| ≥
(

y

k − 1

)
>

(
x+ 1

k − 1

)
≥

k∑
i=h

(
ai
i− 1

)
.

This completes the proof of Theorem 6.3.10.

6.3.3 Concluding Remarks

Let H ⊂
(

[n]
3

)
be an intersecting family with |H| ≥ PF(n, 3) = 10. Then Theorems 6.3.33

and 6.3.34 completely determine the structure of H. One can use this structural result to

determine the minimum size of |∂`H| completely for 1 ≤ ` ≤ 2. However, the calculation is very

complicated and tedious, so we omit it here.

As we mentioned before, for 1 ≤ ` ≤ t the lower bound for |H| in Theorem 6.3.6 above is

tight for t ≥ k−1
2 and can be improved for t < k−1

2 . Indeed, one can use the ∆-system method

(see [148]) to prove the following result.

Theorem 6.3.37. Let t ≥ 1, k ≥ 3, ε > 0, and n be sufficiently large. Suppose that H ⊂
([n]
k

)
is t-intersecting. If t < k−1

2 and |H| > (k − t + ε)
(

n
k−t−1

)
, then either H ⊂ AK(n, k, t) or

H ⊂ EM(n, k, t, t). If t ≥ k−1
2 and |H| > (t + 1 + ε)

(
n

k−t−1

)
, then H is contained in one of

AK(n, k, t),EM(n, k, t+ 2, t+ 1),EM(n, k, t, t).

One can easily use Corollary 6.3.18 to show that for 1 ≤ ` ≤ t, |∂`LmAK(n, k, t)| >

|∂`LmEM(n, k, t, t)| for sufficiently large n and m. Therefore, by Theorem 6.3.37, we obtain the

following result.
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Fact 6.3.38. Let k ≥ 3, t < k−1
2 , 1 ≤ ` ≤ t, ε > 0, and n be sufficiently large. Then

every t-intersecting family H ⊂
([n]
k

)
with |H| = m > (k − t + ε)

(
n

k−t−1

)
satisfies |∂`H| ≥

|∂`LmEM(n, k, t, t)|.
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6.4 Hypergraphs without non-trivial subgraphs

6.4.1 Introduction

For d ≥ 2 a hypergraph F is d-wise-intersecting if
⋂
i∈[d]Ei 6= ∅ for all E1, . . . , Ed ∈ F , and

F is non-trivial d-wise-intersecting if it is d-wise-intersecting but
⋂
E∈F E = ∅. If d = 2, then

we simply call F intersecting and non-trivial intersecting, respectively.

A d-simplex is a collection of d + 1 sets {A1, . . . , Ad+1} such that
⋂
i 6=j Ai 6= ∅ for all

j ∈ [d + 1], but
⋂
i∈[d+1]Ai = ∅. The Chvátal Simplex Conjecture [41] states that for every

k ≥ d + 1 ≥ 3 and n ≥ (d + 1)k/d if a hypegraph H ⊂
([n]
k

)
does not contain a d-simplex as a

subgraph, then |H| ≤
(
n−1
k−1

)
, with equality only if H is a star, i.e. all sets in H contain a fixed

vertex. The case k = d + 1 was proved by Chvátal [41]. Mubayi and Verstraëte [198] proved

the conjecture for all k ≥ 3 and d = 2. Recently, Currier [47] proved this conjecture for all

k ≥ d+ 1 ≥ 3 and n ≥ 2k. The Chvátal Simplex Conjecture is still open in general for n < 2k

and 3 ≤ d ≤ k − 2, and we refer the reader to [19; 46; 101; 88; 90; 140; 145; 157] and their

references for more results related to this conjecture.

It is easy to see that the family of all d-simplexes is the same as the family of all non-trivial

d-wise-intersecting hypergraphs of size d+ 1, and if a hypergraph is d-wise-intersecting, then it

is also d′-wise-intersecting for all 2 ≤ d′ ≤ d.

In the proof for the Chvátal Simplex Conjecture for d = 2 Mubayi and Verstraëte actually

proved the following stronger result.
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Theorem 6.4.1 (Mubayi–Verstraëte [198]). Let k ≥ d + 1 ≥ 3 and n ≥ (d + 1)k/d. Suppose

that H ⊂
([n]
k

)
contains no non-trivial intersecting subgraph of size d + 1. Then |H| ≤

(
n−1
k−1

)
,

with equality only if H is a star.

Mubayi and Verstraëte also remarked that their proof of Theorem 6.4.1 actually works for

d slightly greater than k as well, and they posed the following conjecture.

Conjecture 6.4.2 (Mubayi–Verstraëte [198]). Let d ≥ k ≥ 4 and n be sufficiently large.

Suppose that H ⊂
([n]
k

)
contains no non-trivial intersecting subgraph of size d+ 1. Then |H| ≤(

n−1
k−1

)
, with equality only if H is a star.

Let m ≥ 2. Recall that a Steiner (n, 3,m − 1)-system is a 3-graph S on n vertices such

that every pair of vertices in V (S) is contained in exactly m − 1 edges of S. It follows from

Keevash’s result [138] that if n is a multiple of 3 and sufficiently large, then there exists a

Steiner (n, 3,m− 1)-system.

Notice that a Steiner (n, 3,m−1)-system has size m−1
3

(
n
2

)
, which is greater than

(
n−1

2

)
when

m ≥ 4. It was observed by Mubayi and Verstraëte [198] that a Steiner (n, 3,m − 1)-system

does not contain non-trivial intersecting subgraph of size 3m + 1. Therefore, they made the

following conjecture for 3-graphs.

Conjecture 6.4.3 (Mubayi–Verstraëte [198]). Let m ≥ 4 and n be sufficiently large. Suppose

that H ⊂
(

[n]
3

)
contains no non-trivial intersecting family of size 3m+ 1. Then |H| ≤ m−1

3

(
n
2

)
,

with equality holds iff H is a Steiner (n, 3,m− 1)-system.
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In this section, we confirm Conjecture 6.4.2 by proving a stronger statement (Theorem

6.4.6), and disprove Conjecture 6.4.3 by showing a construction with more than m−1
3

(
n
2

)
edges

and contains no non-trivial intersecting subgraph of size 3m+ 1.

Let s ≥ 2. A family D = {D1, . . . , Ds} is a ∆-system (or a sunflower) if Di ∩Dj = C for all

{i, j} ⊂ [s]. The set C is called the center of D.

Definition 6.4.4. Let k, d ≥ p ≥ 2, and ~a = (a1, . . . , ap), ~b = (b1, . . . , bp) be two sequences of

positive integers with
∑p

i=1 ai = k.

(1) An ~a-partition of a k-set E is a partition E =
⋃
i∈[p]Ai such that |Ai| = ai for i ∈ [p].

(2) A semi-(~a,~b)-∆-system is a collection of sets {E0, E
1
1 , . . . , E

b1
1 , . . . , E

1
p , . . . , E

bp
p } such that

for some ~a-partition of E0 =
⋃
i∈[p]Ai, the family {E0, E

1
i , . . . , E

bi
i } is a ∆-system with

center E0 \Ai for all i ∈ [p]. The set E0 is called the host of this semi-(~a,~b)-∆-system.

(3) An (~a,~b)-∆-system is a semi-(~a,~b)-∆-system {E0, E
1
1 , . . . , E

b1
1 , . . . , E

1
p , . . . , E

bp
p } such that

sets E1
1 \ E0, . . . , E

b1
1 \ E0, . . . , E

1
p \ E0, . . . , E

bp
p \ E0 are pairwise disjoint.

(4) An (~a, d)-∆-system is a (~a,~b)-∆-system for some ~b such that
∑p

i=1 bi = d.

From the definitions one can easily obtain the following observation.

Observation 6.4.5. Let k, d ≥ p ≥ 3 and ~a = (a1, . . . , ap) be a sequence of integers with∑p
i=1 ai = k. Then an (~a, d)-∆-system is a non-trivial (p−1)-wise-intersecting hypergraph with

d+ 1 edges.

An (~a, d)-∆-system in which d = p, i.e. b1 = · · · = bp = 1 was studied by Füredi and

Özkahya in [85]. In this note we employ a machinery (a complicated version of the delta-system
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method) developed by them and even earlier by Frankl and Füredi [99], to obtain the following

tight bound for the size of a hypergraph without (~a, d)-∆-systems for all d ≥ p ≥ 2.

Theorem 6.4.6. Let k > p ≥ 2, d ≥ p, and ~a = (a1, . . . , ap) be a sequence of positive integers

with
∑p

i=1 ai = k. Suppose that n ≥ n0(k, d) is sufficiently large and H ⊂
([n]
k

)
does not contain

a (~a, d)-∆-system as a subgraph. Then |H| ≤
(
n−1
k−1

)
, with equality only if H is a star.

Remark. Our proof of Theorem 6.4.6 uses the delta-system method and Theorem 6.4.15 due

to Füredi, so our lower bound for n0(k, d) is at least exponential in k and d. It would be

interesting to find the minimum value of n0(k, d) such that the statement in Theorem 6.4.6

holds for all n ≥ n0(k, d).

The following result is an immediate consequence of Theorem 6.4.6 and Observation 6.4.5.

Theorem 6.4.7. Let k > p ≥ 3, d ≥ p. Suppose that n ≥ n0(k, d) is sufficiently large and

H ⊂
([n]
k

)
does not contain a non-trivial (p− 1)-wise-intersecting subgraph of size d+ 1. Then

|H| ≤
(
n−1
k−1

)
, with equality only if H is a star.

Note that Conjecture 6.4.2 is a special case of Theorem 6.4.7, i.e. p = 3.

We are also able to prove the following stability version of Theorem 6.4.6.

Theorem 6.4.8. Let k > p ≥ 2, d ≥ p, and ~a = (a1, . . . , ap) be a sequence of positive integers

with
∑p

i=1 ai = k. For every δ > 0 there exists ε > 0 and n0(k, d, δ) such that the following

holds for all n ≥ n0(k, d, δ). Suppose that H ⊂
([n]
k

)
does not contain a (~a, d)-∆-system as a

subgraph, and |H| ≥ (1− ε)
(
n−1
k−1

)
. Then there exists a vertex v ∈ [n] such that v is contained in

all but at most δnk−1 edges in H.
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For 3-graphs the following result shows that Conjecture 6.4.3 is not true in general.

Theorem 6.4.9. Let m ≥ 4, n be a multiple of 3 and sufficiently large. Then there exists a

3-graph Ŝ on n vertices with m−1
3

(
n
2

)
+ n

3 edges and contains no non-trivial intersecting subgraph

of size 3m+ 1.

6.4.2 Constructions

In this section we give a construction to show that Conjecture 6.4.3 is not true in general.

We need the following structural theorem of intersecting 3-graphs due to Kostochka and Mubayi

[148]. Define

• EKR(n) =
{
A ∈

(
[n]
3

)
: 1 ∈ A

}
.

• H0(n) =
{
A ∈

(
[n]
3

)
: |A ∩ [3]| ≥ 2

}
.

• H1(n) =
{
A ∈

(
[n]
3

)
: 1 ∈ A and |A ∩ {2, 3, 4}| ≥ 1

}
∪ {234}.

• H2(n) =
{
A ∈

(
[n]
3

)
: 1 ∈ A and |A ∩ {2, 3}| ≥ 1

}
∪ {234, 235, 145}.

• H3(n) =
{
A ∈

(
[n]
3

)
: {1, 2} ∈ A

}
∪ {134, 135, 145, 234, 235, 245}.

• H4(n) =
{
A ∈

(
[n]
3

)
: {1, 2} ∈ A

}
∪ {134, 156, 235, 236, 245, 246}.

• H5(n) =
{
A ∈

(
[n]
3

)
: {1, 2} ∈ A

}
∪ {134, 156, 136, 235, 236, 246}.

Theorem 6.4.10 (Kostochka–Mubayi [148]). Every intersecting 3-graph with at least 11 edges

is contained in one of EKR(n), H0(n), H1(n), . . . ,H5(n).

For a 3-graph H and {u, v} ⊂ V (H) let degH(uv) denote the number of edges in H that

contain both u and v. Let ∆2(H) = max{degH(uv) : {u, v} ⊂ V (H)}.
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Observation 6.4.11. Let H be a 3-graph with e edges. If H ⊂ H0(n), then ∆2(H) ≥ d e3e.

If H ⊂ H2(n), then ∆2(H) ≥ d e−3
2 e. If H is contained in H3(n), H4(n), or H5(n), then

∆2(H) ≥ e− 6.

Now we define the construction. Let n be a multiple of 3 and sufficiently large. Let S ⊂
(

[n]
3

)
be a Steiner (n, 3,m− 1)-system. Then the complement of S, which is S̄ :=

(
[n]
3

)
\ S, satisfies

that dS̄(uv) = n −m + 1 for all {u, v} ⊂ V (S). Therefore, by the Rödl–Ruciński–Szemerédi

Theorem [221], S̄ contains a matching M with n/3 edges. Let Ŝ = S ∪M. Then it is easy to

see that

|Ŝ| = |S|+ |M| = m− 1

3

(
n

2

)
+
n

3
.

The following proposition proves Theorem 6.4.9.

Proposition 6.4.12. Let m ≥ 4. Then Ŝ does not contain a non-trivial intersecting subgraph

of size 3m+ 1.

Proof. Suppose to the contrary that this is not true. Let F ⊂ Ŝ be a non-trivial inter-

secting subgraph with 3m + 1 ≥ 11 edges. By Theorem 6.4.10, F is contained in one of

H0(n), H1(n), . . . ,H5(n). Notice that ∆2(F) ≤ ∆2(Ŝ) = m. If F is contained in one of

H0(n), H2(n), . . . ,H5(n), then by Observation 6.4.11, ∆2(F) ≥ min
{
d3m+1

3 e, d3
2m− 1e, 3m− 5

}
>

m, a contradiction. Therefore, F ⊂ H1(n). Then F contains four vertices v0, v1, v2, v3 such

that degŜ(v0v1) + degŜ(v0v2) + degŜ(v0v3) ≥ 3m, which implies degŜ(v0v1) = degŜ(v0v2) =
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degŜ(v0v3) = m. However, this is impossible because the set
{
{u, v} ⊂ V (S) : deg

Ŝ
(uv) = m

}
consists of n/3 copies of pairwise vertex-disjoint triangles.

6.4.3 Lemmas

In this section we present some preliminary lemmas for the proofs of Theorems 6.4.6 and

6.4.8. Our first lemma shows that a sufficiently large semi-(~a,~c)-∆-system contains an (~a,~b)-

∆-system.

Lemma 6.4.13. Let k, d ≥ p ≥ 2 and ~a = (a1, . . . , ap), ~b = (b1, . . . , bp), ~c = (c1, . . . , cp) be

sequences of positive integers with
∑p

i=1 ai = k. Suppose that ci ≥ bi +
∑i−1

j=1 ajbj for i ∈ [p].

Then every semi-(~a,~c)-∆-system contains an (~a,~b)-∆-system. In particular, if c1 ≥ 1 and

ci ≥ kd for 2 ≤ i ≤ p, then every semi-(~a,~c)-∆-system contains an (~a, d)-∆-system.

Proof. Let F = {E0, E
1
1 , . . . , E

c1
1 , . . . , E

1
p , . . . , E

cp
p } be a semi-(~a,~c)-∆-system. Our goal is to

choose {F 1
i , . . . , F

bi
i } ⊂ {E1

i , . . . , E
ci
i } for all i ∈ [p] so that sets E0, F 1

1 , . . . , F
b1
1 , . . ., F 1

p , . . . , F
bp
p

form a (~a,~b)-∆-system.

Since c1 ≥ b1, we can simply let F j1 = Ej1 for j ∈ [b1]. Now suppose that we have defined sets

{F 1
1 , . . . , F

b1
1 , . . . , F 1

i , . . . , F
bi
i } for some i ∈ [p− 1]. We are going to define sets F 1

i+1, . . . , F
bi+1

i+1 .

Note that for every 1 ≤ j ≤ i and 1 ≤ ` ≤ bj the set F `j \ E0 can have nonempty intersection

with at most aj sets in {E1
i+1, . . . , E

ci+1

i+1 }. Since ci+1 ≥ bi+1 +
∑i

j=1 ajbj , there exist at least

bi+1 sets in {E1
i+1, . . . , E

ci+1

i+1 } that have empty intersection with all sets in {F 1
1 \ E0, . . . , F

b1
1 \

E0, . . . , F
1
i \ E0, . . . , F

bi
i \ E0}, and choose any bi sets from them to form {F 1

i+1, . . . , F
bi+1

i+1 }.
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The process terminates when i = p, and clearly, sets E0, F
1
1 , . . . , F

b1
1 , . . . , F 1

p , . . . , F
bp
p form an

(~a,~b)-∆-system.

Now suppose that c1 ≥ 1 and ci ≥ kd for 2 ≤ i ≤ p. Let b1 = 1 and bi ≥ 1 for 2 ≤ i ≤ p such

that
∑p

i=2 bi = d − 1. Since ci ≥ kd ≥ bi +
∑i−1

j=1 ajbj , by the previous argument, F contains

an (~a,~b)-∆-system, which is an (~a, d)-∆-system.

For a hypergraph H and E ∈ H. The intersection structure of E with respect to H is

I(E,H) := {E ∩ E′ : E′ ∈ H \ {E}}.

A hypergraph H ⊂
([n]
k

)
is k-partite if there exists a partition [n] = V1 ∪ · · · ∪ Vk such that

|E ∩ Vi| = 1 for all i ∈ [k]. Suppose that H is k-partite with k parts V1, . . . , Vk. Then for every

S ⊂ [n], its projection is Π(S) := {i : S ∩ Vi 6= ∅}. For every family F ⊂ 2[n], its projection is

Π(F) := {Π(F ) : F ∈ F}.

Definition 6.4.14. Let s ≥ 2. A hypergraph H ⊂
([n]
k

)
is s-homogeneous if it satisfies the

following conditions.

(1) H is k-partite.

(2) There exists a family J ⊂ 2[k] \ {[k]} such that Π(I(E,H)) = J for all E ∈ H, where J

is called the intersection pattern of H.

(3) J is closed under intersection, i.e. if A,B ∈ J , then A ∩B ∈ J .

(4) For every E ∈ H every set in I(E,H) is the center of a ∆-system D of size s formed by

edges of H and containing E, i.e. E ∈ D ⊂ H.
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A hypergraph H ⊂
([n]
k

)
is homogeneous if it is s-homogeneous for some s ≥ 2.

Füredi [109] showed that for every s ≥ 2, every hypergraph contains a large s-homogeneous

subgraph.

Theorem 6.4.15 (Füredi [109]). For every s, k ≥ 2, there exists a constant c(k, s) > 0 such

that every hypergraph H ⊂
([n]
k

)
contains a s-homogeneous subgraph H∗ with |H∗| ≥ c(k, s)|H|.

For a family J ⊂ 2[k] \ {[k]} the rank of J is

r(J ) := min{|A| : A ⊂ [k], A 6∈ J and @B ∈ J such that A ⊂ B}.

It is easy to see from the definition that r(J ) = k iff J = 2[k] \ {[k]}.

The following lemma gives an upper bound for the size of a homogeneous hypergraph H in

terms of the rank of its intersection pattern and its shadow.

Lemma 6.4.16. Let H ⊂
([n]
k

)
be a homogeneous hypergraph with intersection pattern J ⊂

2[k] \ {[k]}. Then |H| ≤ |∂k−r(J )H|.

Proof. Let r = r(J ). By the definition of rank, there exists an r-set S ⊂ [k] that is not

contained in J , and moreover, every T ⊂ [k] that contains S is also not contained in J . Since

Π(I(E,H)) = J for all E ∈ H, there exists an r-set in every E ∈ H that is not contained in

any other edges in H. Therefore, |H| ≤ |∂k−rH|.
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The following lemma shows that if a hypergraph is s-homogeneous for sufficiently large s

and does not contain an (~a, d)-∆-system as a subgraph, then the rank of its intersection pattern

is at most k − 1.

Lemma 6.4.17. Let d ≥ p ≥ 2, k > p, s ≥ kd + 1, and ~a = (a1, . . . , ap) be a sequence

of positive integers with
∑p

i=1 ai = k. Let H ⊂
([n]
k

)
be a s-homogeneous hypergraph with

intersection pattern J ⊂ 2[k] \ {[k]}. If r(J ) = k, then H contains an (~a, d)-∆-system.

Proof. Since r(J ) = k, J = 2[k] \ {[k]}. Let E ∈ H and let
⋃p
i=1Ai = E be an ~a-partition of

E. Since Π(I(E,H)) = J , we have E \Ai ∈ I(E,H) for all i ∈ [p]. Since H is s-homogeneous,

there exists a ∆-system Di of size s with center E \Ai for i ∈ [p]. By assumption, s ≥ kd+ 1,

therefore, by Lemma 6.4.13, H contains an (~a, d)-∆-system.

Lemmas 6.4.17 and 6.4.16, and Theorem 6.4.15 implies that following proposition.

Proposition 6.4.18. Let d ≥ p ≥ 2, k > p, and ~a = (a1, . . . , ap) be a sequence of positive

integers with
∑p

i=1 ai = k. Let H ⊂
([n]
k

)
be a hypergraph that contains no (~a, d)-∆-systems.

Then there exists a constant c(k, d) > 0 such that |∂H| ≥ c(k, d)|H|.

Proof. Let s = kd+ 1 and H∗ be a maximum s-homogeneous subgraph of H with intersection

pattern J . Then by Theorem 6.4.15, |H∗| ≥ c(k, d)|H| for some constant c(k, d) > 0. Since

H∗ contains no (~a, d)-∆-systems, by Lemma 6.4.17, r(J ) ≤ k − 1. So by Lemma 6.4.16,

|H∗| ≤ |∂H∗|. Therefore, |∂H| ≥ |∂H∗| ≥ |H∗| ≥ c(k, d)|H|.

The next lemma gives another condition that guarantees a hypergraph to contain an (~a, d)-

∆-system as a subgraph.
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Lemma 6.4.19. Let d ≥ p ≥ 2, k > p, s ≥ kd + 1, and ~a = (a1, . . . , ap) be a sequence of

positive integers with
∑p

i=1 ai = k. Let H ⊂
([n]
k

)
and H∗ be a s-homogeneous subgraph of H.

Let E0 ∈ H∗ and
⋃
i∈[p]Ai = E0 be an ~a-partition of E0. Suppose that there exists i0 ∈ [p] such

that E \Ai ∈ I(E,H∗) for all i ∈ [p]\{i0}, and there exists E ∈ H such that E∩E0 = E0 \Ai0,

Then H contains an (~a, d)-∆-system.

Proof. Without loss of generality, we may assume that i0 = 1. By assumption, E \ Ai is the

center of ∆-system of size s ≥ kd + 1 in H∗ ⊂ H for 2 ≤ i ≤ k, and E0 \ A1 is the center of a

∆-system of size 2 in H, i.e. {E0, E}. So by Lemma 6.4.13, H contains an (~a, d)-∆-system.

Lemma 6.4.20. Let d ≥ p ≥ 2, k > p, s ≥ kd + 1, and ~a = (a1, . . . , ap) be a sequence of

positive integers with
∑p

i=1 ai = k. Let H ⊂
([n]
k

)
be a hypergraph that does not contain (~a, d)-

∆-systems. Let H∗ be a s-homogeneous subgraph of H with intersection pattern J . Suppose

that r(J ) = k − 1 and J contains exactly k − 1 (k − 1)-sets. Let v ∈ E ∈ H∗ be the vertex

that is contained in all (k − 1)-sets in I(E,H∗). Then v ∈ F for all F ∈ H that satisfies

|F ∩ E| ≥ k − a1

Proof. Let E = {v1, . . . , vk} ∈ H∗ and suppose that v1 is contained in all (k − 1)-sets in

I(E,H∗). Let F ∈ H and suppose that |E ∩ F | = k − t for some 1 ≤ t ≤ a1, but v1 6∈ F . If

t = a1, then let
⋃
i∈[p]Ai = E be an ~a-partition such that A1 = E \ F . For 2 ≤ i ≤ p since

v1 ∈ E \ Ai, E \ Ai ∈ I(E,H∗). Therefore, E \ Ai is the canter of a ∆-system of size s in H∗

for 2 ≤ i ≤ p. Since E \A1 is the center of a ∆-system of size 2, i.e. {E,F}, by Lemma 6.4.13,

H contains an (~a, d)-∆-system, a contradiction. So, t < a1.
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Let M ⊂ E such that E \ F ⊂ M and |M | = k − a1 + t. Since |M | ≤ k − 1 and v1 ∈ M ,

M ∈ I(E,H∗). Therefore, M is the center of a ∆-system of size s in H∗, which means that

there exists E1 ∈ H∗ such that E1 ∩ E = M and (E1 \ E) ∩ F = ∅. This implies that

E1 ∩ F = M \ (E \ F ) and |E1 ∩ F | = k − a1. Since Π(I(E1,H∗)) = Π(I(E,H∗)), applying

the same argument as above to E1 and F we obtain that H contains an (~a, d)-∆-system, a

contradiction.

For a hypergraph H and E ∈ H the weight of E is

ωH(E) :=
∑

E′⊂E, |E′|=k−1

1

degH(E′)
,

where degH(E′) is the number of edges in H containing E′. We have the following identity:

∑
E∈H

ωH(E) =
∑
E∈H

∑
E′⊂E, |E′|=k−1

1

degH(E′)
=
∑

E′∈∂H

∑
E∈H, E′⊂E

1

degH(E′)
= |∂H|. (6.8)

The following lemma gives a lower bound for ωH(E) regarding the intersection structure of

E in a homogeneous subgraph of H.

Lemma 6.4.21. Let d ≥ p ≥ 2, k > p, s ≥ kd + 1, and ~a = (a1, . . . , ap) be a sequence of

positive integers with
∑p

i=1 ai = k. Let H ⊂
([n]
k

)
be a hypergraph that does not contain (~a, d)-

∆-systems. Let H∗ be a s-homogeneous subgraph of H with intersection pattern J . Suppose

that r(J ) = k − 1. Then the following hold.
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(1) If J contains exactly k− 1 (k− 1)-sets, then every E ∈ H∗ contains a (k− 1)-subset that

is not contained in any other edges in H. In particular, ωH(E) ≥ 1 for all E ∈ H∗.

(2) If J contains at most k − 2 (k − 1)-sets, then ωH(E) ≥ k
k−1 for all E ∈ H∗.

Proof. We prove (1) first. We may assume that a1 ≥ · · · ≥ ak, and note that a1 ≥ 2 since∑p
i=1 ai = k > p. Let E = {v1, . . . , vk} ∈ H∗. Since Π(I(E,H∗)) = J , by assumption, there

are exactly k − 1 (k − 1)-sets in I(E,H∗). Without loss of generality we may assume that

E \ {vi} ∈ I(E,H∗) for 2 ≤ i ≤ k. We claim that {v2, . . . , vk} is not contain in any set in

H\{E}. Indeed, if there exists E1 ∈ H such that {v2, . . . , vk} ⊂ E1, then |E1 ∩E| ≥ k− 1. So,

by Lemma 6.4.20, v1 ∈ E1, which implies that E1 = E.

Now we prove (2). Suppose that J has exactly k − t (k − 1)-sets for some 2 ≤ t ≤ k. Let

E = {v1, . . . , vk} ∈ H∗. Without loss of generality, we may assume that E \ {vi} ∈ I(E,H∗)

for t+ 1 ≤ i ≤ k.

Claim 6.4.22. There does not exist a (t− 1)-set I ⊂ [t] and t− 1 distinct vertices {ui : i ∈ I},

such that (E \ {vi}) ∪ {ui} ∈ H for all i ∈ I.

Proof. Suppose not, and without loss of generality we may assume that Fi := (E\{vi})∪{ui} ∈

H for all 2 ≤ i ≤ t, where u2, . . . , ut are distinct vertices.

By assumption I(E,H∗) contains all (k − 1)-sets that contain {v1, . . . , vt}. Since I(E,H∗)

is closed under intersection, I(E,H∗) contains all proper subsets of E that contain {v1, . . . , vt},

i.e. if A ⊂ {vt+1, . . . , vk}, then E \A ∈ I(E,H∗).
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On the other hand, since r(I(E,H∗)) = k − 1 ≥ k − 2 and E \ {vi}, E \ {vj} 6∈ I(E,H∗)

for i, j ∈ [t], we have E \ {vi, vj} ∈ I(E,H∗) for all {i, j} ⊂ [t]. This together with the

previous argument and the property that I(E,H∗) is closed under intersection imply that if

|A ∩ {v1, . . . , vt}| ≥ 2, then E \A ∈ I(E,H∗).

Let i0 ∈ [p] such that
∑i0−1

i=1 ai < t ≤
∑i0

i=1 ai, and let ` = t −
∑i0−1

i=1 ai. Recall that a1 ≥

· · · ≥ ap ≥ 1 and a1 ≥ 2. Suppose that ` ≥ 2. Then there exists an ~a-partition E =
⋃
i∈[p]Ai

such that A1, . . . , Ai0−1 ⊂ {v1, . . . , vt}, |Ai0 ∩ {v1, . . . , vt}| ≥ ` ≥ 2, and Ai0+1, . . . , Ap ⊂

{vt+1, . . . , vk}. Since a1 ≥ · · · ≥ ai0−1 ≥ ai0 ≥ 2, by the argument above, E \Ai ∈ I(E,H∗) for

all i ∈ [p]. Therefore, E \Ai is the center of a ∆-system of size s ≥ kd+ 1 in H∗ for i ∈ [p], so

by Lemma 6.4.13, H contains an (~a, d)-∆-system, a contradiction. Therefore, ` = 1.

Suppose that ai0 = 1. Then let E =
⋃
i∈[p]Ai be an ~a-partition such that

⋃
i∈[i0]Ai =

{v1, . . . , vt} and v1 ∈ A1. Since A1 ⊂ {v1, . . . , vt} and |A1| ≥ 2, E \ A1 ∈ I(E,H∗). So

E \ A1 is the center of a ∆-system of size s. Without loss of generality we may assume that

a2 = · · · = ai0 = 1 since other cases can be proved similarly. For i0 + 1 ≤ i ≤ p since

Ai ⊂ {vt+1, . . . , vk}, E \ Ai ∈ I(E,H∗). So E \ Ai is is the center of a ∆-system of size s for

i0 + 1 ≤ i ≤ p. Notice that by assumption for every 2 ≤ i ≤ i0 there exists Fji ∈ H such that

Fji ∩E = E \ {vji} for 2 ≤ ji ≤ t, and moreover, {Fji \E : 2 ≤ i ≤ i0} are distinct. Therefore,

by a similar argument as in the proof of Lemma 6.4.13, H contains an (~a, d)-∆-system, a

contradiction. Therefore, ai0 ≥ 2.

Suppose that a1 ≥ 3. Then let E =
⋃
i∈[p]Ai be an ~a-partition such that A2 ∪ · · · ∪Ai0−1 ⊂

{v1, . . . , vt}, vt+1 ∈ A1 and A1 \ {vt+1} ⊂ {v1, . . . , vt}, and {v1, . . . , vt} \
(⋃

i∈[i0−1]Ai

)
⊂ Ai0 .



382

Then |Ai ∩ {v1, . . . , vt}| ≥ 2 for all i ∈ [i0] and Aj ⊂ {vt+1, . . . , vk} for all i0 + 1 ≤ j ≤ p.

Therefore, E \Ai is the center of a ∆-system of size s ≥ kd+ 1 in H∗ for i ∈ [p], so by Lemma

6.4.13, H contains an (~a, d)-∆-system, a contradiction. Therefore, a1 = 2.

Suppose that ap = 1. Then let E =
⋃
i∈[p]Ai be an ~a-partition such that A1 ∪ · · · ∪Ai0−1 =

{v1, . . . , vt−1} and Ap = {vt}. Then E \Ai is the center of a ∆-system of size s ≥ kd+ 1 in H∗

for i ∈ [p− 1] and E \Ap is the center of a ∆-system of size 2 in H, i.e. {E,Ft}. Therefore, by

Lemma 6.4.13, H contains an (~a, d)-∆-system, a contradiction. Therefore, ap = 2.

Now we have a1 = · · · = ap = 2 and ` = 1. Then t is odd, t ≥ 3, and k is even, k > t.

Since E \ {vk} ∈ I(E,H∗), E \ {vk} is the center of a ∆-system of size s in H∗. So there

exists Fk := (E \ {vk}) ∪ {uk} ∈ H∗ such that uk 6∈ {u2, . . . , ut}. Let Fk =
⋃
i∈[p]Ai be an

~a-partition such that A1 = {v2, uk}, A2 = {v1, v3}, and Ai = {v2i−2, v2i−1} for 3 ≤ i ≤ p. Then

for every i ∈ [p] \ {1}, either Ai ⊂ {v1, . . . , vt} or Ai ⊂ {vt+1, . . . , vk−1}. Since Π(I(Fk,H∗)) =

Π(I(E,H∗)), Fk \Ai is the center of a ∆-system of size s ≥ kd+ 1 in H∗ for i ∈ [p] \ {1}. Since

V \ A1 is the center of a ∆-system of size 2 in H, i.e. {Fk, F2}. Therefore, by Lemma 6.4.13,

H contains an (~a, d)-∆-system, a contradiction. This completes the proof of Claim 6.4.22.

Define a bipartite graph G with two parts L = {v1, . . . , vt} and R = [n] \ E, and for every

vi ∈ L and u ∈ R, viu is an edge in G iff (E \ vi)∪{u} ∈ H. Claim 6.4.22 implies that there are

at most t− 2 pairwise disjoint edges in G. Therefore, by the König-Hall theorem, G contains a
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vertex cover S with |S| ≤ t− 2. Let ` = |L \ S| ≥ 2. Then |S ∩R| ≤ `− 2. For every v ∈ L \ S

since NG(v) ⊂ S ∩R, we obtain

degH(E \ {v}) = degG(v) + 1 ≤ `− 1,

which implies that

ωH(E) =
∑

E′⊂E, |E′|=k−1

1

degH(E′)
>
∑
v∈L\S

1

degH(E \ {v})
≥ `

`− 1
≥ k

k − 1
.

This completes the proof of Lemma 6.4.21.

6.4.4 Proofs

In this section we prove Theorems 6.4.6 and 6.4.8. First, let us prove Theorem 6.4.8.

Proof of Theorem 6.4.8. Let k > p ≥ 2, d ≥ p, and ~a = (a1, . . . , ap) be a sequence of integers

such that a1 ≥ · · · ≥ ap ≥ 1 and
∑

i∈[p] ai = k. Let ε > 0 and n be sufficiently large. Let

H ⊂
([n]
k

)
be a hypergraph that contains no (~a, d)-∆-systems and |H| ≥ (1− ε)

(
n−1
k−1

)
.

Let s = kd+ 1 and let H1 be a maximum s-homogeneous subgraph of H. Suppose now we

have defined H1, . . . ,Hi for some i ≥ 1. Let Hi+1 be the maximum s-homogeneous subgraph

of H\
(⋃i

j=1Hj
)

. This process terminates if H\
(⋃m

j=1Hj
)

= ∅ or the intersection pattern of
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Hm+1 has rank at most k− 2 for some m ≥ 1. Let Ji denote the intersection pattern of Hi for

i ∈ [m], and note that by definition and Lemma 6.4.17, r(Ji) = k − 1 for i ∈ [m]. Let

Ĥ1 =
⋃
i

{Hi : i ∈ [m] and Ji contains exactly k − 1 (k − 1)-sets} ,

Ĥ2 =
⋃
i

{Hi : i ∈ [m] and Ji contains at most k − 2 (k − 1)-sets} ,

Ĥ3 = H \
(
Ĥ1 ∪ Ĥ2

)
= H \

 ⋃
i∈[m]

Hi

 .

Our first step is to show that the sizes of Ĥ2 and Ĥ3 are small.

Claim 6.4.23. |Ĥ2|+ |Ĥ3| < 3εk
(
n−1
k−1

)
.

Proof. First we show that Ĥ3 = O(nk−2). We may assume that Ĥ3 6= ∅. Recall that Hm+1

is a maximum s-homogeneous subgraph of Ĥ3 with intersection pattern Jm+1. By Theorem

6.4.15, there exists a constant c(k, s) > 0 such that |Hm+1| ≥ c(k, s)|Ĥ3|. By definition,

r(Jm+1) ≤ k − 2, so by Lemma 6.4.16, |H3| ≤ |∂2H3| ≤
(
n
k−2

)
. Therefore, |Ĥ3| ≤ 1

c(k,s)

(
n
k−2

)
.

Next we show that Ĥ2 = O(nk−2). By Lemma 6.4.19 and Equation 6.8,

|∂H| =
∑
E∈H

ωH(E) =
∑
E∈Ĥ1

ωH(E) +
∑
E∈Ĥ2

ωH(E) ≥ |Ĥ1|+
k

k − 1
|Ĥ2|.
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Therefore, |Ĥ1|+ k
k−1 |Ĥ2| ≤

(
n
k−1

)
, which implies that

|Ĥ2| = (k − 1)

(
|Ĥ1|+

k

k − 1
|Ĥ2|+ |Ĥ3| − |H|

)
≤ (k − 1)

((
n

k − 1

)
+ |Ĥ3| − (1− ε)

(
n− 1

k − 1

))
< 2εk

(
n− 1

k − 1

)
.

This completes the proof of Claim 6.4.23.

Note that the proof of Claim 6.4.23 also shows that

|H| ≤ |Ĥ1|+
k

k − 1
|Ĥ2|+ |Ĥ3| ≤

(
n

k − 1

)
+O(nk−2). (6.9)

Claim 6.4.23 implies that

|Ĥ1| = |H| −
(
|Ĥ2|+ |Ĥ3|

)
> (1− 4εk)

(
n− 1

k − 1

)
. (6.10)

By definition, for every E ∈ Ĥ1 there exists a unique s-homogeneous hypergraph Hi for

some i such that E ∈ Hi, moreover, r(Ji) = k − 1 and Ji contains exactly k − 1 (k − 1)-sets.

Therefore, I(E,Hi) contains a unique vertex c ∈ E such that every (k − 1)-subset of E that

contains c is contained in I(E,Hi). Let c(E) denote this unique vertex c for every E ∈ Ĥ1.

Define Gi =
{
E ∈ Ĥ1 : c(E) = i

}
for i ∈ [n], and notice that

⋃
i∈[n] Gi = Ĥ1 is a partition. Let

Gi(i) = {E \ {i} : E ∈ Gi} for i ∈ [n]. From the proof of Lemma 6.4.21 (1), for every i ∈ [n] and

every E ∈ Gi the set E \ {i} is not contained in any set in H\{E}. Therefore, Gi(i)∩Gj(j) = ∅

for all {i, j} ⊂ [n].
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Claim 6.4.24. ∂Gi(i) ∩ ∂Gj(j) = ∅ for all {i, j} ⊂ [n].

Proof. Suppose not. Without loss of generality we may assume that there exists A ∈ ∂G1(1) ∩

∂G2(2). Then there exists E1 ∈ G1 and E2 ∈ G2 such that E1 = {1, u} ∪A and E2 = {2, v} ∪A

for some u, v ∈ [n]. Since G1 is s-homogeneous and |E2 ∩ E1| ≥ k − 2 ≥ k − a1, by Lemma

6.4.20, 1 ∈ E2. Similarly, we obtain 2 ∈ E1. Therefore, E1 = E2 = {1, 2} ∪ A, which implies

that {1, 2} ∪A ∈ G1 ∩ G2, a contradiction.

Let xi ∈ R such that |Gi| = |Gi(i)| =
(
xi
k−1

)
for i ∈ [n]. Without loss of generality we may

assume that x1 ≥ · · · ≥ xn ≥ 0. By the Kruskal-Katona theorem (e.g. see [175]),

|Gi(i)| ≤
(
xi
k−1

)(
xi
k−2

) |∂Gi(i)| = xi − k + 2

k − 1
|∂Gi(i)|,

for i ∈ [n]. Therefore by Equation 6.10 and Claim 6.4.24,

(1− 4εk)

(
n− 1

k − 1

)
< |Ĥ1| =

∑
i∈[n]

|Gi| =
∑
i∈[n]

|Gi(i)| ≤
∑
i∈H

xi − k + 2

k − 1
|∂Gi(i)|

≤ x1 − k + 2

k − 1

∑
i∈H
|∂Gi(i)| ≤

x1 − k + 2

k − 1

(
n

k − 2

)
,

which implies that

x1 ≥ (k − 1)
(1− 4εk)

(
n−1
k−1

)(
n
k−2

) + k − 2 > (1− 5εk)n.
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Therefore,

|G1| =
(

x1

k − 1

)
>

(
(1− 5εk)n

k − 1

)
> (1− 5εk2)

(
n− 1

k − 1

)
,

which together with Equation 6.9 implies that all but at most 5εk2nk−1 edges in H contain the

vertex 1.

Now we prove Theorem 6.4.6.

Proof of Theorem 6.4.6. Let d ≥ p ≥ 2, k > p, s = kd + 1, and ~a = (a1, . . . , ap) be a sequence

of positive integers such that a1 ≥ · · · ≥ ap and
∑

i∈[p] ai = k. Let n ≥ n0(k, d) be sufficiently

large. Let H ⊂
([n]
k

)
be a hypergraph that contains no (~a, d)-∆-systems and |H| =

(
n−1
k−1

)
. It

suffices to show that all edges in H contain a fixed vertex.

From the proof of Theorem 6.4.8 we know that H contains a subgraph G1 such that all edges

in G1 contains a fixed vertex (we may assume that this vertex is 1), moreover, G1 consists of

pairwise edge-disjoint s-homogeneous hypergraphs whose intersection patterns have rank k− 1

and contain all (k − 1)-subsets of [k] that contain 1.
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Define

B0 = {E ∈ H : 1 6∈ E},

B1 = {E ∈ H : 1 ∈ E and |E ∩B| ≥ k − a1 for some B ∈ B0},

G = {E ∈ H \ B1 : 1 ∈ E, ∀S ⊂ E with 1 ∈ S is the center of a ∆-system in H of size s},

B2 = {E ∈ H : 1 ∈ E} \ (B1 ∪ G).

Note that G1 ⊂ G. Let

B1(1) = {E \ 1: E ∈ B1}, G(1) = {E \ 1: E ∈ G}, and B2(1) = {E \ 1: E ∈ B2}.

Let B∗1(1),B∗2(1) be maximum s-homogeneous subgraphs of B1(1),B2(1), respectively. Then

by Theorem 6.4.15, |B∗i (1)| ≥ c(k, s)|Bi(1)| for some constant c(k, s) > 0 and i = 1, 2. Recall

that for every E ∈ ∂G(1), degG(1)(E) is the number of edges in G(1) that contain E. Since∑
E∈∂G(1) degG(1)(E) = (k − 1)|G(1)| and degG(1)(E) ≤ n− k + 1, we have

|∂G(1)| ≥ k − 1

n− k + 1
|G(1)|. (6.11)

Claim 6.4.25. |G|+ 4|B0| ≤
(
n−1
k−1

)
.
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Proof. Notice that by definition |E ∩ B| ≤ k − a1 − 1 ≤ k − 3 for all E ∈ G(1) and B ∈ B0.

Therefore, ∂G(1) ∩ ∂2B0 = ∅, and hence |∂G(1)| + |∂2B0| ≤
(
n−1
k−2

)
. Let x ∈ R such that

|∂B0| =
(
x
k−1

)
, then by the Kruskal-Katona theorem and Proposition 6.4.18,

|∂2B0| ≥
k − 1

x− k + 1
|∂B0| ≥

k − 1

x− k + 1
c(k, s)|B0|.

Therefore, together with Equation 6.11 we obtain

k − 1

n− k + 1
|G(1)|+ k − 1

x− k + 1
c(k, s)|B0| ≤

(
n− 1

k − 2

)
,

which implies |G|+c(k, s)n−k+1
x−k+1 |B0| ≤

(
n−1
k−1

)
. By Theorem 6.4.8,

(
x
k−1

)
= |∂B0| ≤ k|B0| ≤ δnk−1

for all sufficiently small δ > 0 (as long as n is sufficiently large), so x < δ′n for some sufficiently

small δ′ > 0 (depending on δ). Choosing δ′ � c(k, s) we obtain c(k, s) n−k+1
δ′n−k+1 > 4, this

completes the proof of Claim 6.4.25.

Claim 6.4.26. Every E ∈ B∗1(1) has a (k − 2)-subset that is not contain in any other set in

B∗1(1) ∪ G′.

Proof. Suppose not. Let E = {v1, . . . , vk−1} ∈ B∗1(1) such that E \ {vi} is contained in some

set in B∗1(1)∪G(1) for 1 ≤ i ≤ k− 1. Without loss of generality we may assume that E \ {vi} ∈

I(E,G(1)) for 1 ≤ i ≤ `, and E \ {vi} ∈ I(E,B∗1(1)) for `+ 1 ≤ i ≤ k − 1.
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Let JB∗1(1) be the intersection pattern of B∗1(1). Let B∗1 = {E ∪ {1} : E ∈ B∗1(1)}, and note

that B∗1 is also s-homogeneous with intersection pattern JB∗1 := {A ∪ {1} : A ∈ JB∗1(1)}. Let

Ê = E ∪ {1} ∈ B∗1.

If ` = 0, then JB∗1(1) = 2[k−1] \ {[k− 1]}, and hence r(Π(I(Ê,B∗1))) = k− 1 and Π(I(Ê,B∗1))

contains all (k − 1)-subsets of Ê that contain 1. By definition there exists B ∈ B0 such that

|B ∩ Ê| ≥ k − a1. However, by Lemma 6.4.20, 1 ∈ B, a contradiction. Therefore, ` ≥ 1.

Let Ei ∈ G such that Ei∩ Ê = Ê \{vi} for 1 ≤ i ≤ `. Let B ∈ B0 such that |B∩ Ê| ≥ k−a1

and suppose that |B ∩ Ê| = k − t for some 1 ≤ t ≤ a1. Then for 1 ≤ i ≤ ` we have

|B ∩ Ei| ≥ k − t − 1. However, by the definition of G, |B ∩ Ei| ≤ k − a1 − 1 for 1 ≤ i ≤ `.

Therefore, |B∩Ê| = k−a1 and vi ∈ B for all 1 ≤ i ≤ `. Let
⋃
i∈[p]Ai = Ê be an ~a-partition such

that A1 = Ê \ B. Note that for 2 ≤ i ≤ p, either 1 ∈ Ê \ Ai ⊂ Eji for some 1 ≤ ji ≤ `, which

by the definition of G, is the center of some ∆-system of size s in H, or {1, v1, . . . , v`} ⊂ Ê \Ai,

which implies that Ê \ Ai ∈ I(Ê,B∗1) and hence is the center of some ∆-system of size s in

B∗1. Note that E \ A1 is the center of a ∆-system of size 2, i.e. {Ê, B}. Therefore, by Lemma

6.4.13, H contains an (~a, d)-∆-system, a contradiction.

By Claim 6.4.26, we obtain |∂G(1)|+ |B∗1(1)| ≤
(
n−1
k−2

)
, which implies |G|+c(k, s)n−k+1

k−1 |B1| ≤(
n−1
k−1

)
. Note that c(k, s)n−k+1

k−1 � 1, so

|G|+ 4|B1| ≤
(
n− 1

k − 1

)
.
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Claim 6.4.27. Every E ∈ B∗2(1) has a (k − 2)-subset that is not contain in any other set in

B∗2(1) ∪ G′.

Proof. Suppose not. Let E = {v1, . . . , vk−1} ∈ B∗2(1) such that E \ {vi} is contained in some

set in B∗2(1)∪G(1) for 1 ≤ i ≤ k− 1. Without loss of generality we may assume that E \ {vi} ∈

I(E,G(1)) for 1 ≤ i ≤ `, and E \ {vi} ∈ I(E,B∗2(1)) for `+ 1 ≤ i ≤ k − 1.

Let JB∗2(1) be the intersection pattern of B∗2(1). Let B∗2 = {E ∪ {1} : E ∈ B∗2(1)}, and note

that B∗2 is also s-homogeneous with intersection pattern JB∗2 := {A ∪ {1} : A ∈ JB∗2(1)}. Let

Ê = E ∪ {1} ∈ B∗2.

If ` = 0, then JB∗2(1) = 2[k−1] \ {[k− 1]}, and hence r(Π(I(Ê,B∗2))) = k− 1 and Π(I(Ê,B∗2))

contains all (k− 1)-subsets of Ê that contain 1. Since I(Ê,B∗2) is closed under intersection, all

proper subsets of Ê that contain 1 is contained in I(Ê,B∗2), which by definition, implies that

Ê ∈ G, a contradiction. Therefore, ` ≥ 1.

Let Ei ∈ G such that Ei ∩ Ê = Ê \ {vi} for 1 ≤ i ≤ `. For every proper subset S ⊂ Ê with

1 ∈ S, if vi 6∈ S for some 1 ≤ i ≤ `, then S ⊂ Ei, which, by the definition of G, means that S is

the center of some ∆-system of size s in H. If {v1, . . . , v`} ⊂ S, then S ∈ I(Ê,B∗2) and hence

S is the center of some ∆-system of size s in B∗2. Therefore, every proper subset S ⊂ Ê with

1 ∈ S is the center of some ∆-system of size s in H, which by definition, implies that Ê ∈ G, a

contradiction.
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Similarly, we obtain

|G|+ 4|B2| ≤
(
n− 1

k − 1

)
.

Therefore, by the assumption that |H| =
(
n−1
k−1

)
we obtain

3

(
n− 1

k − 1

)
≤ 3|H|+ |B0|+ |B1|+ |B2|

= |G|+ 4|B0|+ |G|+ 4|B1|+ |G|+ 4|B2| ≤ 3

(
n− 1

k − 1

)
,

which implies that |G| =
(
n−1
k−1

)
and B0 = B1 = B2 = ∅. This completes the proof of Theorem

6.4.6.
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7.1 Sparse halves in K4-free graphs

7.1.1 Introduction

Generalizing Turán’s theorem, Erdős [61] initialized the study of the following problem:

Given a constant 0 ≤ α ≤ 1, what is the minimum value β = β(α, r) such that every n-vertex

Kr-free graph contains a vertex set of size bαnc which spans at most βn2 edges? This is often

referred as the local density problem.

The case α = 1/2 is of special interest. Erdős [63] offered $250 for the first solution to the

following long-standing conjecture on triangle-free graphs.

Conjecture 7.1.1 (Erdős [61]). Every triangle-free graph on n vertices contains a vertex set

of size bn/2c that spans at most n2/50 edges.

Both of the balanced blow-ups of the 5-cycle and the Petersen graph show that the bound

n2/50 would be best possible if this conjecture is true. Despite extensive research [153; 143;

203; 15], Conjecture 7.1.1 is still open.

A similar question also has been asked for K4-free graphs. Chung and Graham [40], and

Erdős, Faudree, Rousseau and Schelp [65] posted the following conjecture.

Conjecture 7.1.2 (Chung et al. [40], Erdős et al. [65]). Every K4-free graph on n vertices

contains a vertex set of size bn/2c that spans at most n2/18 edges.

The Turán graph T3(n) shows that the bound n2/18 in Conjecture 7.1.2 would be best

possible if it is true. A closely related conjecture of Erdős (see [64]), which was proved by

Sudakov [237], states that every K4-free graphs on n vertices can be made bipartite by deleting
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at most n2/9 edges. An interesting interplay between these problems for regular graphs was

observed by Krivelevich [153], where he pointed out that a bound in the local density problem

can imply a bound (doubled) in the problem of making a graph bipartite; also see [237] for an

illustration.

The main result of this section is to confirm Conjecture 7.1.2 for all regular graphs. We

prove it in the following form, which also characterizes the unique extremal graph.

Theorem 7.1.3. Let G be a K4-free regular graph on n vertices. If every vertex set of size

bn/2c in G spans at least n2/18 edges, then n is divisible by 6 and G ∼= T3(n).

We would like to remark that our proof of Theorem 7.1.3 actually shows that Conjecture

7.1.2 holds for all almost regular graphs, i.e. graphs whose difference of maximum degree and

minimum degree is bounded by εn for some absolute constant ε > 0.1 2

As a corollary, Theorem 7.1.3 implies the following slightly stronger version of Sudakov’s

theorem in the case of regular graphs.

Corollary 7.1.4. Let n ∈ N be even. Then every regular K4-free graph on n vertices can be

made bipartite by removing at most n2/9 edges such that each part has size exactly n/2.

For odd n ∈ N, one could easily obtain a similar result as in Corollary 7.1.4.

We now introduce a crucial tool in our proof of Theorem 7.1.3, which also can be viewed as

a strengthening of the local density problem. Erdős, Faudree, Rousseau and Schelp conjectured

1 Our calculations indicate that ε can be chosen as ε = 1/500.

2 Conjecture 7.1.2 has been completely resolved by Reiher [218] recently.
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in [65] that for every α ∈ [17/30, 1], every triangle-free graph on n vertices contains a vertex set

of size bαnc that spans at most (2α − 1)n2/4 edges. This was confirmed by Krivelevich [153]

for all α ∈ [3/5, 1]. The coming result shows that the bound (2α− 1)n2/4 can be improved in

the range where α is relatively large.

Theorem 7.1.5. Let α, c ∈ [0, 1] satisfy α+ c ≥ 1. Then the following hold:

(1). Every n-vertex triangle-free graph with cn2 edges contains a vertex set of size bαnc that

spans at most (2α− 1)cn2 edges.

(2). Assume that αn ∈ N and G is an n-vertex triangle-free graph. If every vertex set of size

αn in G spans at least (2α− 1)cn2 edges, then G is regular, and vice versa.

Note that by Mantel’s theorem [186], we have (2α− 1)cn2 ≤ (2α− 1)n2/4.

7.1.2 Preliminaries

Recall that for two disjoint vertex sets S, T ⊂ V (G), we let G[S, T ] be the induced bipartite

subgraph of G with two parts S, T and let eG(S, T ) be the number of edges in G[S, T ]. If it is

clear from the context we omit the subscript G. We also omit floors and ceilings when they are

not essential in our proofs.

The following propositions can be found in the literature (e.g. [143]). For completeness we

include their proofs here.

Proposition 7.1.6. Let 0 ≤ α ≤ 1. Then every n-vertex graph G with e edges contains a

vertex set of size αn that spans at most α2e edges.
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Proof. Choose S ⊂ V (G) with |S| = αn uniformly at random. Then for every edge e, the

probability that e is contained in S is αn
n ·

αn−1
n−1 ≤ α

2. So, the expected value of e(S) is at most

α2e. Hence there exists a vertex set of size αn in G that spans at most α2e edges.

Proposition 7.1.7. Let G be an n-vertex graph with e edges. Let A∪B = V (G) be a partition

with |A| = αn ≤ n/2. Then there exists S ⊂ B with |S| = (1/2− α)n such that

e(A ∪ S) ≤ e(A) +
1/2− α
1− α

e(A,B) +

(
1/2− α
1− α

)2

e(B)

= e(G)− 1

2(1− α)
e(A,B)− 3/2− 2α

2(1− α)2
e(B).

Proof. Choose S ⊂ B with |S| = (1/2− α)n uniformly at random. Then, for every e ∈

E(G[A,B]) the probability that e is contained in A ∪ S is 1/2−α
1−α . Similar to the proof of

Proposition 7.1.6, for every e′ ∈ E(G[B]) the probability that e′ is contained in S is at most(
1/2−α
1−α

)2
. So, the expected value of e(A∪S) is at most e(A) + 1/2−α

1−α e(A,B) +
(

1/2−α
1−α

)2
e(B).

Therefore, there exists S ⊂ B with |S| = (1/2− α)n such that the desired inequality holds.

7.1.3 Local densities in triangle-free graphs

In this section we prove Theorem 7.1.5. First we show the following proposition for the

“vice versa” part of Theorem 7.1.5 (2).

Proposition 7.1.8. Let α, c ∈ [0, 1], n ∈ N such that αn ∈ N. Suppose that G is a triangle-free

regular graph on n vertices with cn2 edges. Then every S ⊆ V (G) with |S| = αn spans at least

(2α− 1)cn2 edges.
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Proof. Let S ⊂ V (G) be a set with size αn let T = V (G) \ S. Since G is regular, every vertex

has degree 2cn, which shows that

2e(S) + e(S, T ) =
∑
v∈S

d(v) = 2αcn2 and e(S, T ) ≤
∑
v∈T

d(v) = 2(1− α)cn2.

Therefore,

e(S) =
1

2
(2e(S) + e(S, T )− e(S, T )) ≥ 1

2
(2αcn2 − 2(1− α)cn2) = (2α− 1)cn2,

which completes the proof of Proposition 7.1.8.

Now we prove Theorem 7.1.5. The core of the proof is a probabilistic argument. For

convenience we will assume αn ∈ N in the coming presentation, while the proof for the case

αn 6∈ N holds analogously.

Proof of Theorem 7.1.5. Let α+c ≥ 1 and G be an n-vertex triangle-free graph with cn2 edges.

Our goal is to find a subset S ⊆ V (G) with |S| = αn that spans at most (2α − 1)cn2 edges.

It is clear that we may assume α < 1. We divide the proof into two cases by considering the

value of δ(G).

First suppose that δ(G) ≥ (1−α)n.1 Suppose for the contrary that every subset of size αn

spans more than (2α− 1)cn2 edges. For every v ∈ V (G), let Bv = N(v) and Av = V (G) \ Bv.

Since G is triangle-free, Bv is an independent set and hence e(Av) + e(Av, Bv) = cn2. Let

1 We point out that this case holds even without requiring α+ c ≥ 1.
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dv = d(v)/n. By a similar argument as in Proposition 7.1.7, there exists S ⊆ Bv with |S| =

(α+ dv − 1)n such that

e(Av ∪ S) ≤ e(Av) +
α+ dv − 1

dv
e(Av, Bv).

Since |Av ∪ S| = αn, by assumption, we have

e(Av) +
α+ dv − 1

dv
e(Av, Bv) ≥ e(Av ∪ S) > (2α− 1)cn2,

which together with e(Av) + e(Av, Bv) = cn2 gives

cn2 − 1− α
dv

e(Av, Bv) > (2α− 1)cn2.

Therefore,

∑
v∈V (G)

(
cn2 − 1− α

dv
e(Av, Bv)

)
dv >

∑
v∈V (G)

(2α− 1)cn2dv,

which implies

(1− α)
∑

v∈V (G)

e(Av, Bv) < 2(1− α)cn2
∑

v∈V (G)

dv.

Since
∑

v∈V (G) dv = 2cn and α < 1, this gives

∑
v∈V (G)

e(Av, Bv) < 4c2n3.
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On the other hand, since Bv is independent for each v, by the Cauchy–Schwarz inequality

∑
v∈V (G)

e(Av, Bv) =
∑

v∈V (G)

∑
u∈N(v)

d(u) =
∑

u∈V (G)

(d(u))2 ≥ 1

n

 ∑
u∈V (G)

d(u)

2

= 4c2n3,

which is a contradiction. Therefore, if δ(G) ≥ (1 − α)n, then there exists a vertex set of size

αn that spans at most (2α − 1)cn2 edges. Note that if every vertex set of size αn spans at

least (2α − 1)cn2 edges, then by the above arguments, we see that d(v) must be the same for

all v ∈ V (G), that is, G is regular.

Now suppose that δ(G) < (1 − α)n, where α + c ≥ 1. Choose v ∈ V (G) such that d(v) =

δ(G) < (1 − α)n and remove v from G. We iteratively remove a vertex with the minimum

degree in the remaining graph until there is no vertex left or the remaining graph G′ satisfies

δ(G′) ≥ (1−α)n. Let A denote the set of vertices we removed in this process and let k = |A|/n.

If |A| = n, then e(G) < (1 − α)n2 ≤ cn2, a contradiction. So |A| < n, which implies that

G′ 6= ∅. Since δ(G′) ≥ (1 − α)n, we have |V (G′)| > (1 − α)n. Therefore, k = |A|/n =

(n − |V (G′)|)/n < α. Let B = V (G) \ A and let G′ = G[B]. Also let ñ = (1 − k)n and

α̃ = α−k
1−k . Since δ(G′) ≥ (1 − α)n = (1 − α̃)ñ, by the previous case, there exists S ⊆ B with
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|S| = α̃ñ such that e(S) ≤ (2α̃− 1)e(B). Now we obtain a desired subset A ∪ S in G with size

|A ∪ S| = kn+ α̃ñ = αn and

e(A ∪ S) = e(A) + e(A,S) + e(S) ≤ e(A) + e(A,B) + (2α̃− 1)e(B)

= (2α̃− 1) (e(A) + e(A,B) + e(B)) + 2(1− α̃) (e(A) + e(A,B))

< (2α̃− 1)cn2 + 2(1− α̃)k(1− α)n2 ≤ (2α− 1)cn2,

where the second last inequality is strict since e(A) + e(A,B) < |A|(1−α)n = k(1−α)n2, and

the last inequality follows from

(2α̃− 1)c+ 2(1− α̃)(1− α)k − (2α− 1)c =
2k(1− α)(α+ c− 1)

k − 1
≤ 0.

Therefore in case of δ(G) < (1− α)n, there always exists a subset of size αn spanning strictly

less than (2α − 1)cn2 edges. Together with Proposition 7.1.8, we have finished the proofs of

Theorem 7.1.5 for both (1) and (2).

7.1.4 Sparse halves

In this section we prove Theorem 7.1.3. Let G be a K4-free graph on n vertices. For a

vertex set S ⊂ V (G) with |S| = bn/2c, we call it a sparse half of G if e(S) ≤ n2/18.

We will consider three cases regarding the edge density of G and use quite different tech-

niques in each case. If G is sparse, then we will use some probabilistic arguments to show that

it contains a sparse half. If G is dense, then a result of Lyle [182] gives a nice structure on G
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and this enables us to find a sparse half. The most intricate case is when the edge density of G

is intermediate. In this case, assuming G does not contain a sparse half, we will first find three

large disjoint independent sets in G (by using Theorem 7.1.5), and then building on these sets,

use probabilistic arguments (in a complicated way) to derive a contradiction. Finally, we infer

Theorem 7.1.3 from these cases in Section 7.1.4.4.

In the rest of this section we will state our results without assuming the parities of integers

n. However for convenience, in the proofs we will always view n as even in order to avoid

the floors (while the same arguments also work for odd n). For Theorem 7.1.3, we will see in

Section 4.4 that it suffices to only consider when n is divisible by 6.

7.1.4.1 Sparse range

In this section we will prove the following for graphs with few edges.

Theorem 7.1.9. Suppose that G is a K4-free graph on n vertices with at most 0.26n2 edges.

Then G contains a vertex set of size bn/2c that spans strictly less than n2/18 edges.

We need the following two lemmas from [237] which are proved by probabilistic arguments.

Let t(G) denote the number of triangles in G.

Lemma 7.1.10 (Sudakov [237]). Every graph G on n vertices contains a bipartite subgraph G′

such that

e(G′) ≥ 1

n

∑
v∈V (G)

(d(v))2 − 2

n

∑
v∈V (G)

e (N(v)) ≥ 4 (e(G))2

n2
− 6t(G)

n
.
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Lemma 7.1.11 (Sudakov [237]). Every K4-free graph on n vertices contains a bipartite sub-

graph G′ such that

e(G′) ≥ e(G)

2
+

1

n

∑
v∈V (G)

(
4 (e(N(v)))2

(d(v))2 − e(N(v))

2

)
.

The next lemma shows that if a K4-free graph G contains a large enough bipartite subgraph,

then it contains a sparse half.

Lemma 7.1.12. Let G be a K4-free graph on n vertices with cn2 edges. Suppose that there is

a partition A ∪ B = V (G) such that e(A,B) > 9c2n2/4. Then G contains a vertex set of size

bn/2c that spans strictly less than n2/18 edges.

Proof. Suppose for the contrary that every vertex set of size n/2 in G spans at least n2/18

edges. Assume that a := |A|/n ≤ 1/2. Applying Proposition 7.1.6 to G[B], we obtain a

vertex set S ⊂ B with |S| = n/2 such that e(S) ≤
(

1/2
1−a

)2
e(B). By assumption we have(

1/2
1−a

)2
e(B) ≥ n2/18, which implies

e(B) ≥ 2(1− a)2

9
n2.

Now applying Proposition 7.1.7 to A∪B, we see that there exists T ⊂ V (G) with |T | = n/2

such that A ⊂ T and e(T ) ≤ cn2 − 1
2(1−a)e(A,B)− 3/2−2a

2(1−a)2
e(B). By assumption, we have

n2

18
≤ cn2 − 1

2(1− a)
e(A,B)− 3/2− 2a

2(1− a)2
e(B) ≤ cn2 − 1

2(1− a)
e(A,B)− 3/2− 2a

9
n2,
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which implies

e(A,B) ≤ 2(1− a)

(
c− 3/2− 2a

9
− 1

18

)
n2 =

(
2(1− a)c− 4

9
(1− a)2

)
n2 ≤ 9

4
c2n2,

a contradiction. Here the last inequality follows from
(

2
3(1− a)− 3

2c
)2
n2 ≥ 0.

Now we are ready to prove Theorem 7.1.9.

Proof of Theorem 7.1.9. Let c = e(G)/n2 and let λ = 8/13. By Lemmas 7.1.10 and 7.1.11,

there exists a partition A ∪B = V (G) such that

e(A,B) ≥ (1− λ)

 1

n

∑
v∈V (G)

(d(v))2 − 2

n

∑
v∈V (G)

e (N(v))


+ λ

e(G)

2
+

1

n

∑
v∈V (G)

(
4 (e(N(v)))2

(d(v))2 − e(N(v))

2

)
=
λ

2
e(G) +

4λ

n

∑
v∈V (G)

(d(v))2

((
e (N(v))

(d(v))2

)2

− 2− 3λ/2

4λ

e (N(v))

(d(v))2 +
1− λ

4λ

)
.

Since

x2 − 2− 3λ/2

4λ
x+

1− λ
4λ

≥ 88λ− 73λ2 − 16

256λ2
,
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we obtain

e(A,B) ≥ λ

2
e(G) +

88λ− 73λ2 − 16

64λ

∑
v∈V (G)

d(v)2

n

≥ λ

2
e(G) +

88λ− 73λ2 − 16

64λ

∑
v∈V (G)

(∑
v∈V (G) d(v)

n

)2

=

(
λ

2
c+

88λ− 73λ2 − 16

16λ
c2

)
n2 =

(
4

13
c+

111

104
c2

)
n2.

Since 4
13c+ 111

104c
2 > 9

4c
2 holds for all c ∈ (0, 32

123) and 32
123 > 0.26, we derive that e(A,B) > 9

4c
2n2

whenever c ≤ 0.26. Therefore, by Lemma 7.1.12, G contains a vertex set of size n/2 that spans

strictly less than n2/18 edges.

7.1.4.2 Dense range

In this section we prove the following for graphs with high minimum degree.

Theorem 7.1.13. Suppose that G is a K4-free graph on n vertices with δ(G) ≥ 0.59n. Then

G contains a vertex set of size bn/2c that spans at most n2/18 edges. Moreover, if every vertex

set of size bn/2c in G spans at least n2/18 edges, then G ∼= T3(n).

To show this, we need a structural result on dense K4-free graphs. A Kr-free graph G

is maximal if adding any new edge to G will result in a copy of Kr. Let G1 and G2 be

two vertex disjoint graphs. The join of G1 and G2, denoted by G1 ∨ G2, is a graph with

V (G1 ∨G2) = V (G1) ∪ V (G2) and

E(G1 ∨G2) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.
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Theorem 7.1.14 (Lyle [182]). Let G be a maximal K4-free on n vertices with δ(G) ≥ 4n/7.

Then either G contains an independent set of size at least 4δ(G) − 2n or G is the join of an

independent set and a triangle-free graph.

Our next lemma shows that if a K4-free graph G contains a large induced triangle-free

graph, then G contains a sparse half.

Lemma 7.1.15. Let G be a K4-free graph on n vertices. Suppose that G contains an induced

triangle-free subgraph Γ with at least 2n/3 vertices. Then G contains a vertex set of size n/2

that spans at most n2/18 edges. Moreover, if |V (Γ)| > 2n/3, then G contains a vertex set of

size n/2 which spans strictly less than n2/18 edges.

Proof. Let A ⊂ V (G) such that Γ = G[A] and let x = |A|/n. We may assume that x ≤ 5/6

since otherwise we could choose A′ ⊂ A with |A′| = 5n/6 and consider G[A′] instead. Let

α = 1/(2x). Then α ≥ 3/5. By a result of Krivelevich on triangle-free graphs [153], there exists

T ⊂ A with |T | = α|A| = n/2 such that

e(T ) ≤
2× 1

2x − 1

4
|A|2 =

(1− x)x

4
n2 ≤ n2

18
,

where in the last inequality we used the assumption that x ≥ 2/3. Notice that if x > 2/3, then

the inequality above is strict. This proves the lemma.

We also need the following slightly stronger version of Krivelevich’s theorem on local densi-

ties of triangle-free graphs. A proof is included in the appendix, which follows from a detailed

analysis of Krivelevich’s proof in [153] as well as the proof of Erdős et al. in [65].
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Theorem 7.1.16 (Krivelevich [153]). Let 3/5 < α ≤ 1, n ∈ N and αn ∈ N. Let G be a

triangle-free graph on n vertices. If every vertex set of size αn in G spans at least 2α−1
4 n2

edges, then G ∼= T2(n).

Now we are ready to prove Theorem 7.1.13.

Proof of Theorem 7.1.13. It is clear that to prove Theorem 7.1.13, it suffices to consider maxi-

mal K4-free graphs. Let G be a maximal K4-free graph on n vertices with δ(G) ≥ 0.59n > 4n/7.

Then by Theorem 7.1.14, either G is the join of an independent set and a triangle-free graph

or G contains an independent set of size at least 4δ(G)− 2n.

First, suppose that the former case occurs, that is, G is the join of an independent set I and

a triangle-free graph Γ. Let α = |V (Γ)|/n. So |I| = (1 − α)n. We may assume that α > 1/2

since otherwise we can simply choose a subset of I with size n/2 which spans none of edges.

On the other hand, if α > 2/3, then by Lemma 7.1.15, we are done. So we may assume that

1/2 < α ≤ 2/3.

Let c = e(Γ)/(αn)2. If c < 2/9, then by Proposition 7.1.6, there exists S ⊂ V (Γ) with

|S| = n/2 such that

e(S) ≤
(

1/2

α

)2

c(αn)2 =
1

4
cn2 <

n2

18
.

So we may assume that c ≥ 2/9. Since Γ has αn vertices and at least 2α2n2/9 edges, there

exists some v ∈ V (Γ) such that dΓ(v) ≥ 4αn/9 ≥ (α − 1/2)n, where the last inequality holds
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as α ≤ 2/3. Let T ⊂ NΓ(v) be any subset with |T | = (α− 1/2)n. Since Γ is triangle-free, T is

an independent set. Therefore, I ∪ T has size n/2 and satisfies

e(I ∪ T ) ≤ (1− α)

(
α− 1

2

)
n2 ≤ n2

18
,

where the last inequality uses the assumption that α ≤ 2/3. Notice that if α < 2/3, then the

inequality above is strict.

Now we may assume that G contains an independent set A whose size is at least 4δ(G)−2n ≥

9n/25. We may just take A such that |A| = 9n/25. Let B = V (G) \ A. By Proposition 7.1.7,

there exists U ⊂ B with |U | = 7n/50 such that

e(A ∪ U) ≤ 7/50

16/25
e(A,B) +

(
7/50

16/25

)2

e(B) =
175

1024
e(A,B) +

49

1024
(e(A,B) + e(B))

≤ 175

1024

(
9

25
n× 16

25
n

)
+

49

1024
× n2

3
=

4249

76800
n2 <

n2

18
.

Therefore, A ∪ U is a sparse half with e(A ∪ U) < n2/18.

From the arguments above, one could see that if every vertex set of size n/2 in G spans

at least n2/18 edges, then G must be the join of a triangle-free graph Γ and an independent

set I with |V (Γ)| = 2n/3. Since every vertex set of size n/2 = 3
4 |V (Γ)| in Γ spans at least

n2/18 = (2 · 3/4− 1)|V (Γ)|2/4 edges, by Theorem 7.1.16 we have Γ ∼= T2(2n/3), which implies

G ∼= T3(n). This finishes the proof of Theorem 7.1.13.



409

7.1.4.3 Intermediate range

In this section we will prove the following result for regular graphs.

Theorem 7.1.17. Every K4-free regular graph G on n vertices with e(G) ≤ 0.297n2 contains

a vertex set of size bn/2c that spans strictly less than n2/18 edges.

We would like to remind the reader that the assumption that G is regular in Theorem 7.1.17

can be replaced by ∆(G)− δ(G) ≤ εn for some absolute (but small) constant ε > 0. However,

in order to keep the proof simple we shall only consider regular graphs.

The proof ideas are as follows. First, under the assumption that all subsets of size n/2

span at least n2/18 edges, we show that G must contain many triangles. Then we show that

there exists a partition V (G) = V1 ∪ V2 ∪ V3 ∪ V4 such that V1, V2, V3 are independent sets and

|V1| + |V2| + |V3| is relatively large. Finally, utilizing this partition, we employ some ad hoc

probabilistic arguments to find a sparse half and thus reach a contradiction.

Recall that t(G) denotes the number of triangles in G.

Lemma 7.1.18. Let G be an n-vertex K4-free graph with cn2 edges and n/2 ≤ δ(G) ≤ ∆(G) ≤

9n/14. Suppose that every vertex set of size bn/2c in G spans at least n2/18 edges. Then we

have t(G) ≥ c
27(1−2c)n

3.

Proof. For every v ∈ V (G) let αv = n
2d(v) and cv = e(N(v))/ (d(v))2. First notice that cv ≥ 2/9

for all v ∈ V (G), since otherwise by Proposition 7.1.6, there would be a set S ⊂ N(v) with

|S| = n/2 such that e(S) ≤ α2
v · e(N(v)) < n2/18, a contradiction.
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Fix v ∈ V (G). Since d(v) ≤ 9n/14, we see αv ≥ 7/9 ≥ 1 − cv. By Theorem 7.1.5 and

our assumption, there exists a vertex set T ⊂ N(v) with |T | = n/2 such that n2

18 ≤ e(T ) ≤

(2αv − 1)e(N(v)). This implies that for all v ∈ V (G),

e(N(v)) ≥ n2

18

1

2αv − 1
=
n2

18

d(v)

n− d(v)
.

Summing over all v ∈ V (G), we obtain that t(G) = 1
3

∑
v∈V (G) e(N(v)) is at least

n2

54

∑
v∈V (G)

d(v)

n− d(v)
≥ n2

54

∑
v∈V (G) d(v)∑

v∈V (G)(n− d(v))
=
n2

54

2e(G)

n2 − 2e(G)
=

c

27(1− 2c)
n3.

Here we used Jensen’s inequality and the fact that x
n−x is convex for x ∈ (0, n).

We also need the following lemma in [237]. For distinct u, v ∈ V (G), let N(uv) denote the

set of common neighbors of u and v and let d(uv) = |N(uv)|.

Lemma 7.1.19 (Sudakov [237]). Every graph G with e edges and m triangles contains a triangle

uvw such that d(uv) + d(vw) + d(wu) ≥ 9m
e .

Notice that if G is K4-free, then N(uv) is independent for all uv ∈ E(G) and N(uv) ∩

N(vw) = ∅ for all triangles uvw in G. The following lemma is an immediate consequence of

Lemmas 7.1.18 and 7.1.19.
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Lemma 7.1.20. Let G be an n-vertex K4-free graph with cn2 edges and n/2 ≤ δ(G) ≤ ∆(G) ≤

9n/14. Suppose every vertex set of size bn/2c in G spans at least n2/18 edges. Then there exist

three disjoint independent sets V1, V2, V3 in G such that

|V1|+ |V2|+ |V3| ≥
n

3(1− 2c)
.

Now we are ready to prove Theorem 7.1.17.

Proof of Theorem 7.1.17. Let G be a K4-free regular graph on n vertices with cn2 edges, where

c ≤ 0.297. Suppose that every vertex set of size n/2 in G spans at least n2/18 edges. By

Theorem 7.1.9, we may assume that c ∈ [1/4, 0.297]. So every vertex has degree 2cn with

n/2 ≤ 2cn ≤ 0.594n < 9n/14. Then by Lemma 7.1.20, there exist three disjoint independent

sets V1, V2, V3 in G such that

|V1|+ |V2|+ |V3| = g(c)n, where g(c) =
1

3(1− 2c)
.

Let V4 = V (G) \
(⋃3

i=1 Vi

)
and let xi = |Vi|/n for i ∈ [4]. Without loss of generality we may

assume that 1/2 > x1 ≥ x2 ≥ x3. Let eij = e(Vi, Vj) for all {i, j} ⊂ [4] (so eij = eji) and let

e4 = e(V4). We will consider four cases depending on the values of x1, x2 and x3.

Case 1: x1 + x2 ≥ x1 + x3 ≥ x2 + x3 ≥ 1
2 .

Now we choose different n/2 vertices from G according to Table 1. For example, the second

row in Table 1 means to choose all vertices of V1 and choose a set S ⊂ V2 with |S| = (1/2− x1)n
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V1 V2 V3 V4

x1 1/2− x1 0 0

x1 0 1/2− x1 0

0 x2 1/2− x2 0

1/2− x2 x2 0 0

1/2− x3 0 x3 0

0 1/2− x3 x3 0

TABLE I

DIFFERENT SCHEMES FOR CHOOSING N/2 VERTICES FROM G.

uniformly at random. Then the expected value of e(V1∪S) is 1/2−x1
x2

e12. So there exists S ⊂ V2

with |S| = (1/2− x1)n such that e(V1 ∪ S) ≤ 1/2−x1
x2

e12. By assumption, we have

1/2− x1

x2
e12 ≥

n2

18
⇒ e12 ≥

1

9

x2

1− 2x1
n2.

Similarly, one can get from Table 1 that for all (i, j) ∈ [3]× [3] with i 6= j,

1/2− xi
xj

eij ≥
n2

18
⇒ eij ≥

1

9

xj
1− 2xi

n2.
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Adding them up, we obtain that e12 + e13 + e23 = 1
2

∑
i 6=j eij is at least

1

18

(
x2 + x3

1− 2x1
+
x1 + x3

1− 2x2
+
x2 + x1

1− 2x3

)
n2 =

1

18

(
g(c)− x1

1− 2x1
+
g(c)− x2

1− 2x2
+
g(c)− x3

1− 2x3

)
n2.

Since g(c)−x
1−2x is convex, by Jensen’s inequality we see that

e12 + e13 + e23 ≥
1

6
· g(c)− (x1 + x2 + x3)/3

1− 2(x1 + x2 + x3)/3
n2 =

g(c)

3(3− 2g(c))
n2. (7.1)

On the other hand, since G is regular,1 we have

e14 + e24 + e34 + 2e4 =
∑
v∈V4

d(v) = 2cn× |V4| = 2c(1− g(c))n2. (7.2)

Since G[V4] is K4-free, by Turán’s theorem we get

e4 ≤
1

3
|V4|2 =

(1− g(c))2

3
n2. (7.3)

Therefore, it follows from Equation 7.1, Equation 7.2 and Equation 7.1 that (recall that

V1, V2, V3 are independent)

cn2 +
(1− g(c))2

3
n2 ≥ e(G) + e4 ≥

g(c)

3(3− 2g(c))
n2 + 2c(1− g(c))n2,

1 We point out that throughout the proof of Theorem 7.1.17, this is the only place where we need the restriction

that G is regular.
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which is a contradiction because

h(c) :=
g(c)

3(3− 2g(c))
+ 2c (1− g(c))−

(
c+

(1− g(c))2

3

)

is decreasing in c for c ∈ [1/4, 0.297] and h(0.297) > 0 (see [183]). This proves Case 1.

Case 2: x2 + x3 ≤ x1 + x3 ≤ x1 + x2 <
1
2 .

Note that this case can exist only when g(c) < 3/4, which implies c < 5/18.

V1 V2 V3 V4

x1 x2 1/2− x1 − x2 0

x1 1/2− x1 − x3 x3 0

1/2− x2 − x3 x2 x3 0

x1 0 0 1/2− x1

0 x2 0 1/2− x2

0 0 x3 1/2− x3

TABLE II

DIFFERENT SCHEMES FOR CHOOSING N/2 VERTICES FROM G.
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Now we choose n/2 vertices according to Table 2. Then similar to Case 1, we obtain that

for every k ∈ [3] and {i, j} = [3]\{k},

eij +
1/2− xi − xj

xk
(eik + ejk) ≥

n2

18
, (7.4)

and for all i ∈ [3]

1/2− xi
x4

ei4 +

(
1/2− xi
x4

)2

e4 ≥
n2

18
. (7.5)

By simplifying the linear combination of

∑
k∈[3]

(
xk
x4
× Equation 7.4

)
+
∑
i∈[3]

(
x4

1/2− xi
× Equation 7.5

)
,

we can derive that

e(G) +
e4

2x4
≥ x1 + x2 + x3

18x4
n2 +

x4

18

(
1

1/2− x1
+

1

1/2− x2
+

1

1/2− x3

)
n2

≥x1 + x2 + x3

18x4
n2 +

x4

18
× 3

1/2− (x1 + x2 + x3)/3
n2 =

1− x4

18x4
n2 +

x4

3− 2(1− x4)
n2.

Since e4 ≤ |V4|2/3 = x2
4n

2/3 and x4 = 1− g(c), the inequality above implies

c+
1− g(c)

6
≥ 1− (1− g(c))

18(1− g(c))
+

1− g(c)

3− 2(1− (1− g(c)))
=

g(c)

18(1− g(c))
+

1− g(c)

3− 2g(c)
,
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which is a contradiction because

k(c) := c+
1− g(c)

6
−
(

g(c)

18(1− g(c))
+

1− g(c)

3− 2g(c)

)

is strictly smaller than 0 for c ∈ [1/4, 5/18) (see [183]). This proves Case 2.

Case 3: x2 + x3 <
1
2 ≤ x1 + x3 ≤ x1 + x2.

V1 V2 V3 V4

x1 1/2− x1 0 0

x1 0 1/2− x1 0

1/2− x2 − x3 x2 x3 0

x1 0 0 1/2− x1

1/2− x2 − x4 x2 0 x4

1/2− x3 − x4 0 x3 x4

TABLE III

DIFFERENT SCHEMES FOR CHOOSING N/2 VERTICES FROM G.
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We choose n/2 vertices according to Table 3. Similar as above, we can obtain that

1/2− x1

xi
e1i ≥

n2

18
for i ∈ {2, 3}, (7a)

e23 +
1/2− x2 − x3

x1
(e12 + e13) ≥ n2

18
, (7b)

1/2− x1

x4
e14 +

(
1/2− x1

x4

)2

e4 ≥
n2

18
, and (7c)

ej4 + e4 +
1/2− xj − x4

x1
(e1j + e14) ≥ n2

18
for j ∈ {2, 3}. (7d)

By simplifying the linear combination of

∑
i=2,3

(
x2
i

(1/2− x1)x1
× (7a)

)
+ (7b) +

x2
4

(1/2− x1)x1
× (7c) +

∑
j=2,3

(7d),

we derive that

e(G) +
e4

2x1
≥
(

1

6
+
x2

2 + x2
3 + x2

4

9x1(1− 2x1)

)
n2.

Since e4 ≤ |V4|2/3 = x2
4n

2/3, the inequality above implies that

c+
x2

4

6x1
≥ 1

6
+
x2

2 + x2
3 + x2

4

9x1(1− 2x1)
.

This is a contradiction due to the following claim whose proof can be found in the appendix.
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Claim 7.1.21. Under the conditions of Case 3, we have

1

6
+
x2

2 + x2
3 + x2

4

9x1(1− 2x1)
− x2

4

6x1
− c > 0.

This contradiction completes the proof of Case 3.

Case 4: x2 + x3 ≤ x1 + x3 <
1
2 ≤ x1 + x2.

V1 V2 V3 V4

x1 1/2− x1 0 0

x1 0 1/2− x1 0

x1 1/2− x1 − x3 x3 0

1/2− x2 − x3 x2 x3 0

x1 0 0 1/2− x1

0 x2 0 1/2− x2

1/2− x3 − x4 0 x3 x4

0 1/2− x3 − x4 x3 x4

TABLE IV

DIFFERENT SCHEMES FOR CHOOSING N/2 VERTICES FROM G.
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Choosing n/2 vertices according to Table 4, we obtain that

1/2− xi
x3−i

ei,3−i ≥
n2

18
⇒ ei,3−i ≥

x3−i
1/2− xi

n2

18
for each i ∈ [2], (7e)

ej3 +
1/2− xj − x3

x3−j
(e12 + e3−j,3) ≥ n2

18
for each j ∈ [2], (7f)

1/2− xk
x4

ek4 +

(
1/2− xk

x4

)2

e4 ≥
n2

18
for each k ∈ [2], and (7g)

e34 + e4 +
1/2− x3 − x4

x`
(e`3 + e`4) ≥ n2

18
for each ` ∈ [2]. (7h)

By simplifying the linear combination of

1

2

(
1 +

1

1− 2x3
− 1

x1 + x2

)∑
i∈[2]

(7e) +
1

1− 2x3

∑
j∈[2]

(
x3−j
x1 + x2

× (7f)

)

+
1

2(x1 + x2)

∑
k∈[2]

(
x4

1/2− xk
× (7g)

)
+

x1 + x2

1/2− x3 − x4

∑
`∈[2]

(
x`

1/2− x3 − x4
× (7h)

)
,

it yields that

e(G) +
1− x1 − x2

2(x1 + x2)x4
e4 ≥

(
1

2

(
1 +

1

1− 2x3
− 1

x1 + x2

)(
x2

1/2− x1
+

x1

1/2− x2

)
+

1

1− 2x3
+

1

2(x1 + x2)

(
x4

1/2− x1
+

x4

1/2− x2

)
+ 1

)
n2

18
.

Since e4 ≤ |V4|2/3 = x2
4n

2/3, the inequality above implies that

c+
(1− x1 − x2)x4

6(x1 + x2)
≥ 1

18

(
1

2

(
1 +

1

1− 2x3
− 1

x1 + x2

)(
x2

1/2− x1
+

x1

1/2− x2

)
+

1

1− 2x3
+

1

2(x1 + x2)

(
x4

1/2− x1
+

x4

1/2− x2

)
+ 1

)
.
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Again, this is a contradiction because of the following claim, whose proof is included in the

appendix.

Claim 7.1.22. Under the conditions of Case 4, we have

c+
(1− x1 − x2)x4

6(x1 + x2)
<

1

18

(
1

2

(
1 +

1

1− 2x3
− 1

x1 + x2

)(
x2

1/2− x1
+

x1

1/2− x2

)
+

1

1− 2x3
+

1

2(x1 + x2)

(
x4

1/2− x1
+

x4

1/2− x2

)
+ 1

)
.

This completes the proof of Theorem 7.1.17.

7.1.4.4 Proof of Theorem 7.1.3

Let G be a K4-free regular graph on n vertices such that every vertex set of size bn/2c in

G spans at least n2/18 edges. Our goal is to show that n is divisible by 6 and G ∼= T3(n)

First we show that it suffices to consider the case that n is divisible by 6. Assume that we

have proved for all n that are divisible by 6, and now consider the case that n is not divisible

by 6. Let H be the blow-up of G obtained by replacing every vertex i ∈ V (G) by a set Vi

of size 6 and replacing every edge ij ∈ E(G) by a complete bipartite graph with parts Vi and

Vj . Then H contains N := 6n vertices and is K4-free and regular, hence by our assumption,

if let S ⊂ V (H) be a subset of size N/2 = 3n spanning the minimum number of edges, then

we have e(S) ≤ N2/18. We may assume that S either contains Vi or is disjoint from Vi for all

but at most one i, since if there are two indices i, j satisfying 1 ≤ |S ∩ V`| ≤ 5 for ` ∈ {i, j},

then we could increase one of the intersections and decreasing the other until |S ∩ V`| ∈ {0, 6}
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for some `, without increasing e(S). So, S contains bn/2c sets Vi. By our assumption on G,

e(S) ≥ 36
⌈
n2/18

⌉
> N2/18, a contradiction.

Now we assume that n is divisible by 6. Let e(G) = cn2 for some c ∈ (0, 1/3]. Then every

vertex in G has degree 2cn. If c ≤ 0.26, then by Theorem 7.1.9, there exists a vertex set

of size n/2 that spans strictly less than n2/18 edges, a contradiction. If c ≥ 0.295, then by

Theorem 7.1.13, we can derive that G ∼= T3(n). So it remains to consider 0.26 < c < 0.295. In

this case, by Theorem 7.1.17, G contains a vertex set of size n/2 that spans strictly less than

n2/18 edges, again a contradiction. We have completed the proof of Theorem 7.1.3.

7.1.5 Concluding remarks

Another problem that is closely related to the Sparse halves problem is making a graph

bipartite. A famous conjecture of Erdős [61] states that every triangle-free graph on n vertices

can be made bipartite by deleting at most n2/25 edges. This is still open, with the extremal

graphs to be the balanced blow-ups of the 5-cycle. Following from Krivelevich’s observation

[153], we see that for regular graphs, Conjecture 7.1.1 would imply the above conjecture of

Erdős. So it seems interesting (but perhaps still difficult) to attack Conjecture 7.1.1 for regular

graphs.

For analogous problems on Kr-free graphs and other related problems, we direct interested

readers to [40; 64; 65; 237].
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7.2 A generalize Erdős–Rademacher problem

7.2.1 Introduction

A classical result of Mantel [186] states that every graph on n vertices with
⌊
n2/4

⌋
+1 edges

contains at least one copy of K3. Rademacher showed that there are actually at least bn/2c

copies of K3 in such graphs. Later, Erdős [56; ?] proved that if t ≤ cn for some small constant

c > 0, then every graph on n vertices with
⌊
n2/4

⌋
+ t edges contains at least t bn/2c copies of

K3. Erdős also conjectured that the same conclusion holds for all t < n/2. Later, Lovász and

Simonovits [178] proved Erdős’ conjecture and they also proved a similar result for Kk with

k ≥ 4. In [194], Mubayi extended their results by proving tight bounds on the number of copies

of color critical graphs in a graph with a prescribed number of vertices and edges.

For a fixed graph F let NF (G) denote the number of copies of F in G. The F -covering

number τF (G) of G is the minimum size of S ⊂ V (G) such that every copy of F in G has at

least one vertex in S. If F = Kk, then we simply use Nk(G) and τk(G) to denote NKk(G) and

τKk(G), respectively.

The classical Erdős–Rademacher problem is to determine the minimum value of NF (G) for

graphs G with fixed number of vertices and edges. Very recently, Xiao and Katona [249] posed

a generalized Erdős–Rademacher problem by putting constraints on τF (G). More precisely,

they asked for the minimum value of NF (G) for graphs G with a fixed number of vertices and

edges and a fixed F -covering number. In particular, they proved that every graph G on n

vertices with
⌊
n2/4

⌋
+ 1 edges and τ3(G) = 2 must contain at least n − 2 copies of K3, which
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is substantially greater than the bound guaranteed by Rademacher’s result. This phenomenon

motivatedp them to pose the following conjectures for the general case.

Conjecture 7.2.1 (Xiao–Katona [249]). Let s > t ≥ 1 be fixed integers and let n ≥ n0 = n0(s, t)

be sufficiently large. Then every graph G on n vertices with
⌊
n2/4

⌋
+ t edges and τ3(G) ≥ s

contains at least (s− 1) bn/2c+ dn/2e − 2(s− t) copies of K3.

Let V be a set of size n. Then a partition V = V1 ∪ · · · ∪ Vk−1 is called balanced if

dn/(k − 1)e ≥ |Vi| ≥ bn/(k − 1)c for all i ∈ [k − 1]. For k ≥ 2 define tk(n) =
∏

1≤i<j≤k |Vi||Vj |,

where V1 ∪ · · · ∪ Vk = [n] is a balanced partition.

Conjecture 7.2.2 (Xiao–Katona [249]). Let s > t ≥ 1, k ≥ 4 be fixed integers. Then every

graph G on n vertices with tk−1(n)+1 edges and τk(G) ≥ 2 contains at least (|V1|+ |V2| − 2)
∏k−1
i=3 |Vi|

copies of Kk, where V1 ∪ · · · ∪ Vk−1 is a balanced partition of [n] with |V1| ≥ · · · ≥ |Vk−1|.

Xiao and Katona claimed that there is a common generalization of Conjectures 7.2.1 and

7.2.2 without writing it explicitly. They also observed that the case s ≤ t of these questions is

a consequence of the previously mentioned results of Rademacher, Erdős [56; ?] and Lovász–

Simonovits [178]. Indeed, it follows from a result of Lovász and Simonovits [178] that the graph

obtained from the balanced complete (k−1)-partite n-vertex graph by adding t pairwise vertex-

disjoint edges into a largest part minimizes the number of copies of Kk among all n-vertex graph

with tk−1(n)+ t edges. Moreover, this graph clearly has Kk-covering number t ≥ s. It therefore

suffices to consider only the case s > t for these questions.
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We show that Conjecture 7.2.1 is not true in general and give the correct bound on the

number of copies of K3 for all s, t and sufficiently large n. On the other hand, we prove

Conjecture 7.2.2 for sufficiently large n and we also prove several generalizations of Conjecture

7.2.2 for graphs G with tk−1(n)+ t edges and τk(G) ≥ s. Our method also gives a bound, which

is tight up to a smaller order error term, for the number of color critical graphs F in a graph

with a fixed number of vertices and edges and a fixed F -covering number.

7.2.1.1 Triangles

To motivate the following definitions let us look at a simple construction first. Suppose

that n is an even integer and s− t is a square. Then the graph G obtained from the complete

bipartite graph with part sizes n/2 + (s − t)1/2 and n/2 − (s − t)1/2 by adding s pairwise

vertex-disjoint edges to the larger part satisfies τ3(G) = s and e(G) = n2/4 + t. Moreover,

N3(G) = s
(
n/2− (s− t)1/2

)
, which is smaller than the bound in Conjecture 7.2.1 for all t ≥ 2.

Now let us present the definitions we need in this section. Let N = {0, 1, . . .} be the set of

nonnegative integers. For s > t ≥ 1 and n ∈ N let e(n) = n2 − 4t2(n) = n2 − 4bn2/4c ∈ {0, 1}

and

Ms,t = Ms,t(n) =
{
m ∈ N : (4s− 4t− 4m+ e(n))1/2 ∈ N

}
.

Note that Ms,t 6= ∅ since s− t ∈Ms,t. Let

ms,t = ms,t(n) = min Ms,t,
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and let

R3(n, s, t) = (4s− 4t− 4ms,t + e(n))1/2 ∈ N.

Define

n+
s,t =

1

2
(n+R3(n, s, t)) and n−s,t =

1

2
(n−R3(n, s, t)) .

Let Bs,t(n) be the complete bipartite graph on n vertices with two parts V1 and V2 such

that |V1| = n+
s,t and |V2| = n−s,t.

Let BMs,t(n) consist of all graphs obtained from Bs,t(n) as follows: take distinct ver-

tices u1, . . . , us, v1, . . . , vs in V1, add the edges u1v1, . . . , usvs and remove ms,t distinct edges

e1, . . . , ems,t such that every ei has one endpoint in {u1, . . . , us, v1, . . . , vs} and the other end-

point in V2, and there is no triangle with three edges in {e1, . . . , ems,t , u1v1, . . . , usvs} (see Fig-

ure 24 (a) and (b)).

Let BSs,t(n) consists of all graphs obtained from Bs,t(n) as follows: take distinct vertices

u′1, . . . , u
′
s−1, v

′
1, . . . , v

′
s−1 in V1 and distinct vertices u′s, v

′
s in V2, add the edges u′1v

′
1, . . . , u

′
sv
′
s

and remove ms,t distinct edges e′1, . . . , e
′
ms,t such that every e′i has one endpoint in the set

{u′1, . . . , u′s−1, v
′
1, . . . , v

′
s−1}



426

and the other endpoint in {u′s, v′s} and there is no triangle with three edges in the set (see

Figure 24 (c) and (d))

{e′1, . . . , e′ms,t , u
′
1v
′
1, . . . , u

′
sv
′
s}.

.

We abuse notation by letting BMs,t(n) and BSs,t(n) denote a generic member of BMs,t(n)

and BSs,t(n) respectively.

Remark. To compare with the original Erdős–Rademacher problem, i.e. without the τ3(G) ≥ s

constraint, recall that the extremal graphs for that problem are graphs obtained from the

balanced complete bipartite graph by adding a triangle-free graph with t edges into the larger

part.

Fact 7.2.3. The following statements hold.

• e (BMs,t(n)) = e (BSs,t(n)) = t2(n) + t.

• τ3 (BMs,t(n)) = τ3 (BSs,t(n)) = s.

• N3 (BMs,t(n)) = s · n−s,t −ms,t.

• N3 (BSs,t(n)) = (s− 1)n−s,t + n+
s,t − 2ms,t = s · n−s,t −ms,t + (n+

s,t − n
−
s,t −ms,t).

By Lemma 7.2.20, if for some p ∈ N

s− t =


p2 − 1, if n is even,

p(p+ 1)− 1, if n is odd,
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u1 v1
w1

u2 v2
w2

ums,t vms,t wms,t

us vs

V1 V2

(a) BMs,t(n).

V1 V2

(b) BMs,t(n).

u′1 v′1
v′s

u′2 v′2
u′s

u′ms,t v
′
ms,t

u′s−1v
′
s−1

V1 V2

(c) BSs,t(n).

V1 V2

(d) BSs,t(n).

Figure 24. Several examples of graphs in BMs,t(n) and BSs,t(n).
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then N3 (BMs,t(n)) = N3 (BSs,t(n)) = s · n−s,t −ms,t.

Our first result shows that BMs,t(n) (and also BSs,t(n) for some special values of s, t)

contains the least number of copies of K3 among all n-vertex graphs with t2(n) + t edges and

K3-covering number at least s.

Theorem 7.2.4. Let s > t ≥ 1. Then there exists n0 = n0(s, t) such that the following holds

for all n ≥ n0. Let G be a graph on n vertices with t2(n) + t edges. If τ3(G) = s, then

N3(G) ≥ s · n−s,t −ms,t

Moreover, equality holds only if G ∼= BMs,t(n) or G ∼= BSs,t(n) except when n is even and

(s, t) ∈ {(2, 1), (3, 1), (4, 1)}, or n is odd and (s, t) ∈ {(3, 2), (4, 1), (5, 1), (6, 1)}. For these

exceptional cases there are other examples showing that the bound is best possible.

Note that Theorem 7.2.4 shows that Conjecture 7.2.1 is not true in general. For example,

let n be even, (s− t)1/2 ∈ N and s− t > 4. Then

N3 (BMs,t(n)) = s · n−s,t −ms,t = s · n−s,t =
sn

2
− (s− t)1/2s,

which is strictly less that sn/2− 2(s− t).

Let V1 ∪ · · · ∪ Vk−1 be a partition of [n] with |V1| ≥ · · · ≥ |Vk−1|. Let K[V1, . . . , Vk−1]

be the complete (k − 1)-partite graph on [n] with parts V1, . . . , Vk−1. If V1 ∪ · · · ∪ Vk−1 is

a balanced partition, then K[V1, . . . , Vk−1] is called the Turán graph Tk−1(n). Notice that
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tk−1(n) = |Tk−1(n)|. The celebrated Turán theorem [242] states that the maximum number of

edges of an n-vertex Kk-free graph is uniquely achieved by Tk−1(n).

For s > m ≥ 0 and ~x = (x1, . . . , xk−1) ∈ Nk−1 with
∑k−1

i=1 xi = n let V1 ∪ · · · ∪ Vk−1 be

a partition of [n] with |Vi| = xi for i ∈ [k − 1]. Let KMm,s(~x) consist of all graphs that are

obtained from K[V1, . . . , Vk−1] as follows: take distinct vertices u1, . . . , us, v1, . . . , vs in V1, add

the edges u1v1, . . . , usvs and remove m distinct edges e1, . . . , em such that every ei contains

one vertex from {u1, . . . , us, v1, . . . , vs} and one vertex from Vk−1 and there is no triangle with

edges in {e1, . . . , em, u1v1, . . . , usvs}. We abuse notation by letting KMs,t(~x) denote a generic

member in KMm,s(~x). It is easy to see that

e (KMm,s(~x)) =
∑

1≤i<j<k
xixj + s−m and Nk (KMm,s(~x)) = s

k−1∏
i=2

xi −m
k−2∏
i=2

xi.

Let us now consider some special cases of KMm,s(~x) in more detail.

For n ∈ N, write

n = qn,k(k − 1) + rn,k where 0 ≤ rn,k < k − 1.
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Writing r = rn,k and q = qn,k, let ~yr ∈ Nk−1 be defined as follows:

~yr =



(q + 1, q, . . . , q, q − 1) if r = 0

(q + 1, q, . . . , q) if r = 1

(q + 2, q + 1, . . . , q + 1︸ ︷︷ ︸
r−2 times

, q, . . . , q︸ ︷︷ ︸
k−r times

) if r ≥ 2.

Define

Nk(n, s) =



s · qk−3 (q − 1) if r = 0,

s · qk−2 − qk−3 if r = 1,

s · (q + 1)r−2 qk−r if r ≥ 2.

Observe that

e (KM0,s(~yr)) = e (KM1,s(~y1)) = tk−1(n) + s− 1 for r 6= 1

and

Nk (KMm,s(~yr)) = Nk(n, s)

for m = 0, r 6= 1 and m = 1, r = 1.
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Our next result shows that the constructions defined above contain the least number of

copies of Kk in an n-vertex graph G with tk−1(n) + s− 1 edges and τk(G) = s.

Theorem 7.2.5. Let k ≥ 4 and s ≥ 2 be fixed integers. Then there exists n1 = n1(k, s) such

that the following holds for all n ≥ n1. Let G be a graph on n vertices with tk−1(n)+s−1 edges.

If τk(G) = s, then Nk(G) ≥ Nk(n, s). Moreover, for s ≥ 3 equality holds iff G ∼= KM0,s(~yrn,k)

if rn,k 6= 1 and G ∼= KM1,s(~y1) if rn,k = 1.

For s ≥ 2, the following construction which was defined in [249] also achieves the bound

Nk(n, 2). Let V1 ∪ · · · ∪ Vk−1 be a balanced partition of [n] with |V1| ≥ · · · ≥ |Vk−1|. Let T@k−1

be obtained from K[V1, . . . , Vk−1] as follows: take two distinct vertices u1, v1 ∈ V1 and two

distinct vertices u2, v2 ∈ V2, add edges u1v1, u2v2 and remove the edge v1v2. One can easily

check that Nk(T
@
k−1) = (|V1|+ |V2| − 2)

∏k−1
i=3 |Vi| = Nk(n, s). Therefore, Theorem 7.2.5 shows

that Conjecture 7.2.2 is true for large n.

7.2.1.2 k-cliques for large s

Recall that for given n and k, qn,k = bn/(k − 1)c and rn,k = n− (k−1)qn,k. Given s > t ≥ 1

and k ≥ 3, let

Rk(n, s, t) =

(
2(k − 1)(s− t) + (k − 1− rn,k)rn,k

k − 2

)1/2

.

We note that while Rk(n, s, t) depends on n it is bounded from above by a function of only

k, s, t. Let

n+
k,s,t =

n+ (k − 2)Rk(n, s, t)

k − 1
and n−k,s,t =

n−Rk(n, s, t)
k − 1

.
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Suppose that n−k,s,t ∈ N. Then let V1 ∪ · · · ∪ Vk−1 be a partition of [n] with |V1| = n+
k,s,t and

|Vi| = n−k,s,t for 2 ≤ i ≤ k − 1. Let KM(n, k, s, t) be obtained from K[V1, . . . , Vk−1] by taking

distinct vertices u1, . . . , us, v1, . . . , vs in V1 and then adding u1v1, . . . , usvs. Using Lemma 7.2.11

one can easily check that

e (KM(n, k, s, t)) = tk−1(n) + t and Nk (KM(n, k, s, t)) = s · (n−k,s,t)
k−2.

The following result shows that if s is large, then KM(n, k, s, t) minimizes the number of

copies of Kk among all n-vertex graphs G with tk−1(n) + t edges and τk(G) = s.

Theorem 7.2.6. Let s > t ≥ 1 and k ≥ 4 be fixed integers. There exists n2 = n2(k, s, t) such

that the following holds for all n ≥ n2 and s > 2Rk(n, s, t). If G is a graph on n vertices with

tk−1(n) + t edges and τk(G) = s, then

Nk(G) ≥ s · (n−k,s,t)
k−2.

Moreover, if n−k,s,t ∈ N, then equality holds iff G ∼= KM(n, k, s, t).

Note that we are not able to determine the exact minimum value of Nk(G) for small s

because, similar to the situation in Theorem 7.2.4, when s is small there could be many con-

structions that achieve the minimum value of Nk(G). On the other hand, for the case n−k,s,t 6∈ N

our bound might be not tight and actually, we think there might be a better bound for Nk(G)

in this case.
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Let Rk(s, t) = (2(k − 1)(s− t)/(k − 2))1/2. If rn,k = 0, then Rk(n, s, t) = Rk(s, t). Since

k ≥ 4 and t ≥ 1, s > 2Rk(s, t) holds for all s ≥ 11. Therefore, Theorem 7.2.6 gives the following

corollary.

Corollary 7.2.7. Let s > t ≥ 1 and k ≥ 4 be fixed integers. Suppose that s ≥ 11. Then there

exists n3 = n3(k, s, t) such that the following holds for all n ≥ n3 and n ≡ 0 mod k − 1. If G

is a graph on n vertices with tk−1(n) + t edges and τk(G) = s, then Nk(G) ≥ s · (n−k,s,t)
k−2.

Moreover, if n−k,s,t ∈ N, then equality holds iff G ∼= KM(n, k, s, t).

After this work was done we found that similar results as in Theorems 7.2.4, 7.2.5, and 7.2.6

were recently proved by Balogh and Clemen [12].

7.2.1.3 Color-critical graphs

Given a graph G let χ(G) denote the chromatic number of G. Let H be a subgraph of G.

Then the graph G −H is obtained from G by removing all edges that are contained in H. In

particular, if e ∈ E(G), then G− e is obtained from G by removing e.

Definition 7.2.8. Let k ≥ 3. A graph F is k-critical if χ(F ) = k and there exists e ∈ E(F )

such that χ(F − e) < k.

Let k ≥ 3 and let F be a k-critical graph. Let c(n, F ) denote the minimum number of

copies of F in the graph obtained from Tk−1(n) by adding one edge. The number c(n, F )

can be calculated using a formula in [194] and in particular there exists a constant αF > 0

depending only on F such that c(n, F ) = αFn
f−2 + Θ(nf−3).



434

The second author proved [194] that for any k-critical graph F there exists a constant

δ = δF > 0 such that for every 1 ≤ t ≤ δn every n-vertex graph G with tk−1(n) + t edges

contains at least t · c(n, F ) copies of F . We prove the analogous theorem for τF (G) = s.

Theorem 7.2.9. Let s > t ≥ 1 and k ≥ 3 be fixed integers. Let F be a fixed k-critical graph on f

vertices. Then there exists constants C = C(F, s, t) and n4 = n4(F, s, t) such that the following

holds for all n ≥ n4. If G is a graph on n vertices with tk−1(n) + t edges and τk(G) = s, then

NF (G) ≥ s · c(n, F )− Cnf−3.

Remark. For graphs that are not color critical it remains open in general to determine even

their Turán numbers exactly. Therefore, one could expect that a Erdős-Rademacher-type result

(or result as Theorem 7.2.9) for these graphs can be very hard in general.

This bound is tight up to an error term since the graph obtained from Tk−1(n) by adding

s pairwise disjoint edges into one part of Tk−1(n) contains at most s · c(n, F ) + C ′nf−3 copies

of F for some constant C ′ > 0.

7.2.2 Proofs

7.2.2.1 Lemmas

In this section we prove several lemmas that will be used in our proofs.

Definition 7.2.10. Let k ≥ 3 and let F be a k-critical graph. Let c(x1, . . . , xk−1, F ) be the

number of copies of F in the graph obtained from the complete (k − 1)-partite graph with parts

of sizes x1, . . . , xk−1 by adding one edge to the part of size x1.

The following explicit expression for tk−1(n) is very useful in our calculations.
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Lemma 7.2.11 (e.g. see [178]). Let k ≥ 3 and suppose that n ≡ r mod (k − 1) for some

0 ≤ r ≤ k − 2. Then

tk−1(n) =
(k − 2)

2(k − 1)
n2 − (k − 1− r)r

2(k − 1)
.

The following lemma gives a relation between c(x1, . . . , xk−1, F ) and c(n, F ).

Lemma 7.2.12 ([194]). Let k ≥ 3 and F be a k-critical graph. Then there exists a constan-

t γF > 0 depending only on F such that the following holds for all sufficiently large n. If∑k−1
i=1 xi = n and bn/(k − 1)c− d ≤ xi ≤ dn/(k − 1)e+ d for all i ∈ [k− 1]and d ≤ n

3(k−1) , then

c(x1, . . . , xk−1, F ) ≥ c(n, F )− γFdnf−3.

The following lemma, which can be found in several places (e.g. see [194]), gives a bound

on the size of each part for a (k − 1)-partite graph whose number of edges is close to tk−1(n).

Lemma 7.2.13 (e.g. see [194]). Suppose that k ≥ 3 is fixed, n is sufficiently large, d < n and∑k−1
i=1 xi = n. If

∑
1≤i<j≤k−1

xixj ≥ tk−1(n)− d,

then bn/(k − 1)c − d ≤ xi ≤ dn/(k − 1)e+ d for all i ∈ [k − 1].

The following two results will be key in our proofs.
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Theorem 7.2.14 (Graph removal lemma, e.g. see [66]). Let F be a graph with f vertices.

Suppose that G is a graph on n vertices with NF (G) = o(nf ). Then one can remove o(n2) edges

from G such that the resulting graph is F -free.

Theorem 7.2.15 (Erdős–Simonovits stability theorem [233]). Let k ≥ 3 and F be a k-critical

graph. Suppose that G is an F -free graph on n vertices with tk−1(n)− o(n2) edges. Then G can

be made (k − 1)-partite by removing o(n2) edges.

Now we use the results above to obtain a rough structure of a graph with a fixed number

of vertices and edges and a fixed F -covering number that contains not many copies of F .

Given a graph G and v ∈ V (G) we use NG(v) to denote the neighbors of v in G and let

dG(v) = |NG(v)|. For a partition V1 ∪ · · · ∪ Vk−1 of V (G) we use G[V1, . . . , Vk−1] to denote the

induced (k−1)-partite subgraph of G on V1∪· · ·∪Vk−1. We use BG(V1, . . . , Vk−1) to denote the

set of edges in G that are contained inside Vi for some i ∈ [k − 1], i.e. BG(V1, . . . , Vk−1) = G−

G[V1, . . . , Vk−1]. We use MG(V1, . . . , Vk−1) to denote the set of pairs which intersect two parts

that are not edges in G, i.e. MG(V1, . . . , Vk−1) = K[V1, . . . , Vk−1]−G[V1, . . . , Vk−1]. If it is clear

from the context we will use B and M to represent BG(V1, . . . , Vk−1) and MG(V1, . . . , Vk−1),

respectively.

For a k-critical graph F a potential copy of F in G (with respect to the partition V (G) =

V1 ∪ · · · ∪ Vk−1) is a copy of F in G ∪M that uses exactly one edge of B (so every other edge

is between parts).

Lemma 7.2.16. Let s ≥ 1, f ≥ k ≥ 3 be fixed integers and F be a fixed k-critical graph on f

vertices. Then the following holds for sufficiently large n. If G is a graph on n vertices with
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at least tk−1(n) + 1 edges and NF (G) ≤ (s + 1/2) · c(n, F ), then G contains a (k − 1)-partite

subgraph H such that e(H) ≥ e(G)− s.

Proof. Let δ1, δ2, δ3, δ4, ε, ε1, ε2 be constants such that

0 < δ1 � δ2 � δ3 � δ4 � ε2 � ε1 � ε� s−1.

Let n be sufficiently large and in particular n� s/ε2.

Since NF (G) ≤ (s + 1/2) · c(n, F ) < 2sαFn
f−2 = o(nf ), by the Graph removal lemma,

we can remove at most δ1n
2 edges from G such that the resulting graph G1 is F -free. Since

e(G1) ≥ e(G)− δ1n
2 > tk−1(n)− δ1n

2, by the Erdős-Simonovits stability theorem, G1 contains

a (k − 1)-partite subgraph G2 such that e(G2) ≥ tk−1(n)− δ2n
2.

Now let H be a (k − 1)-partite subgraph of G with the maximum number of edges. Then

by the previous argument, e(H) ≥ e(G2) ≥ tk−1(n) − δ2n
2. Let V1 ∪ · · · ∪ Vk−1 be a partition

of V (G) such that H = G[V1, . . . , Vk−1] and let xi = |Vi| for i ∈ [k − 1]. An easy calculation

shows that |xi − n/(k − 1)| ≤ δ3n for all i ∈ [k − 1].

Suppose that |H| = tk−1(n) − ` for some ` ≥ 0. Then |M | ≤ ` and |B| ≥ ` + 1. For every

e ∈ B let F (e) denote the number of copies of F in G containing the unique edge e from B.

Let

B1 = {e ∈ B : F (e) > (1− ε)c(n, F )}

and B2 = B \B1.
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Claim 7.2.17. |B1| ≥ (1− ε)|B|.

Proof. Suppose that |B2| ≥ ε|B|. Let e ∈ B2 and without loss of generality we may assume

that e ⊂ V1. Then by Lemma 7.2.12 the number of potential copies of F containing e is

c(x1, . . . , xk−1, F ) ≥ c(n, F )− γF (δ3n)nf−3 > (1− δ4)c(n, F ).

At least ε · c(n, F )/2 of these potential copies of F have a pair from M , since otherwise

F (e) ≥ (1− δ4)c(n, F )− ε

2
c(n, F ) > (1− ε)c(n, F ),

a contradiction. Now suppose that at least ε · c(n, F )/4 of these potential copies of F have a

pair from M that does not intersect e. For every e′ ∈M with e∩e′ = ∅ the number of potential

copies of F in G that contains both e and e′ is at most nf−4. On the other hand, every potential

copy of F contains at most f2 pairs from M . Therefore,

ε

4
c(n, F ) ≥ |M |f2nf−4,

which implies that

δ2n
2 ≥ |M | ≥

ε
4c(n, F )

f2nf−4
>
εαF
8f2

n2,
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a contradiction. Here we used |M | ≤ tk−1(n) − e(H) ≤ δ2n
2. Therefore, we may assume that

at least ε · c(n, F )/4 of these potential copies of F have a pair from M which has nonempty

intersection with e. Similarly, since every e′′ ∈M with e′′ ∩ e 6= ∅ is contained in at most nf−3

members in F (e) and every potential copy of F contains at most f2 pairs from M , the number

of pairs from M that has nonempty intersection with e is at least

ε
4c(n, F )

f2nk−3
≥ εαF

8f2
n.

Therefore, there exists x ∈ e such that dM (x) ≥ εαF
16f2

n.

Let A =
{
v ∈ V (G) : dM (v) ≥ εαF

16f2
n
}

. Since every e ∈ B contains a vertex in A,

∑
v∈A

dB2(v) ≥ |B2| ≥ ε|B| ≥ ε|M | ≥
ε

2

∑
v∈A

dM (v) ≥ ε2αF
32f2

n|A|.

Therefore, there exists v ∈ A such that dB2(v) ≥ ε2αF
32f2

n and without loss of generality we may

assume that v ∈ V1. Let V ′i = NG(v)∩Vi for i ∈ [k− 1]. Then by the maximality of H we have

|V ′i | ≥ |V ′1 | ≥
ε2αF
32f2

n for all 2 ≤ i ≤ k − 1. Let u ∈ V ′1 . Then by Lemma 7.2.12, the number of

potential copies of F containing uv in the complete (k − 1)-partite graph K[V ′1 , . . . , V
′
k−1] is at

least

c
(
|V ′1 |, . . . , |V ′k−1|, F

)
≥ 1

2
αF

(
ε2αF
32f2

n

)k−2

≥ ε1nk−2.
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Summing over all u ∈ V ′1 , there are at least

ε2αF
32f2

n× ε1nf−2 ≥ ε2nf−1 ≥ 3s · c(n, F )

potential copies of F containing v. By the assumption that NF (G) ≤ (s + 1/2) · c(n, F ), at

least half of these potential copies of F must contain a pair from M , and this pair cannot be

incident with v, since v is adjacent to all vertices in
⋃k−1
i=1 V

′
i . Since the number of potential

copies of F that contain both v and a pair from M that is disjoint from v is at most nf−3 and

each potential copy of F contains at most f2 pairs from M , we obtain

δ2n
2 ≥ |M | ≥ ε2n

f−1/2

f2nf−3
≥ ε2

2f2
n2,

a contradiction.

Claim 7.2.18. |B| ≤ s.

Proof. Suppose that |B| ≥ s+ 1. Then by Claim 7.2.17,

NF (G) ≥
∑
e∈B1

F (e) ≥
∑
e∈B1

(1− ε)c(n, F ) ≥ (1− ε)2|B|c(n, F )

≥ (1− ε)2(s+ 1)c(n, F ) > (s+ 1/2) · c(n, F ),

a contradiction.
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Therefore, by Claim 7.2.18, e(H) = e(G) − |B| ≥ e(G) − s. This completes the proof of

Lemma 7.2.16.

Now we use Lemma 7.2.16 to obtain a fine structure for graphs with a fixed F -covering

number and not many copies of F .

Lemma 7.2.19. Let f ≥ k ≥ 3, s > t ≥ 1 be fixed integers and F be a fixed k-critical graph on

f vertices. Then the following holds for sufficiently large n. Let G be a graph on n vertices with

tk−1(n) + t edges. If τF (G) = s and NF (G) ≤ (s + 1/2) · c(n, F ), then there exists a partition

V (G) = V1 ∪ · · · ∪ Vk−1 such that G−G[V1, . . . , Vk−1] is a matching with s edges.

Proof. Let H be a (k − 1)-partite subgraph of G with the maximum number of edges and let

B = G − H. Since NF (G) ≤ (s + 1/2) · c(n, F ), by Lemma 7.2.16, |B| ≤ s. So it suffices to

show that |B| ≥ s and B is a matching.

Recall that τ(B) = min {|S| : S ⊂ V (G), e ∩ S 6= ∅ for all e ∈ B}. Since every copy of F in

G must contain at least one edge in B, τF (G) ≤ τ(B). Therefore, τ(B) ≥ s. Since |B| ≤ s, the

only possibility is that B is a matching of size s.

7.2.2.2 Proof of Theorem 7.2.4

In this section we prove Theorem 7.2.4. Recall that for s > t ≥ 1 and n ∈ N

n+
s,t =

1

2
(n+R3(n, s, t)) and n−s,t =

1

2
(n−R3(n, s, t)) ,
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where R3(n, s, t) =
(
4s− 4t− 4ms,t + n2 − 4t2(n)

)1/2
and

ms,t = min
{
m ∈ N :

(
4s− 4t− 4m+ n2 − 4t2(n)

)1/2 ∈ N
}
.

We will use the following lemma in our proof.

Lemma 7.2.20. Let s > t ≥ 1 and n ∈ N. Then

n+
s,t − n

−
s,t −ms,t =



0 if n is even and s− t = p2 − 1 for some p ∈ N,

0 if n is odd and s− t = p(p+ 1)− 1 for some p ∈ N,

> 0 otherwise.

Proof. First, notice that n+
s,t − n

−
s,t −ms,t =

(
4s− 4t− 4ms,t + n2 − 4t2(n)

)1/2 −ms,t.

If n is even, then n2−4t2(n) = 0. Let p ∈ N be the largest integer such that s−t = p2 +q for

some q ∈ N. Note that q ≤ 2p since otherwise we would have p2 + q ≥ (p+ 1)2, a contradiction.

Then ms,t = q and hence

(
4s− 4t− 4ms,t + n2 − 4t2(n)

)1/2 −ms,t = 2p−ms,t ≥ 0

and equality holds iff q = 2p.
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If n is odd, then n2−4t2(n) = 1. Let p ∈ N be the largest integer such that s−t = p(p+1)+q

for some q ∈ N. Note that q ≤ 2p+1 since otherwise we would have p(p+1)+q ≥ (p+1)(p+2),

a contradiction. Then ms,t = q and hence

(
4s− 4t− 4ms,t + n2 − 4t2(n)

)1/2 −ms,t = 2p+ 1−ms,t ≥ 0

and equality holds iff q = 2p+ 1.

Now we are ready to prove Theorem 7.2.4.

Proof of Theorem 7.2.4. Let s > t ≥ 1 be fixed and let n be sufficiently large. Let G be a graph

on n vertices with t2(n) + t edges and τ3(G) = s. Since s · n−s,t −ms,t < (s+ 1/2) · c(n,K3), we

may assume that N3(G) ≤ (s + 1/2) · c(n,K3). So, by Lemma 7.2.19, there exists a partition

V (G) = V1 ∪ V2 such that B := G−G[V1, V2] is a matching of size s.

Let x = |V1| and y = |V2| and note that x + y = n. Without loss of generality we may

assume that x ≥ y. Let H = G[V1, V2], M = K[V1, V2]−H, and m = |M |. Since G−B = H =

K[V1, V2]−M , we obtain t2(n) + t− s = xy −m = (n− y)y −m. Therefore, m ∈Ms,t and

y =
1

2

(
n−

(
4s− 4t− 4m+ n2 − 4t2(n)

)1/2)
.

Let si = |B∩
(
Vi
2

)
| for i = 1, 2 and note that s1 +s2 = s. It is easy to see that the number of

potential copies of K3 is s1y+ s2x. We will consider two cases: either si = s for some i ∈ {1, 2}

or s1 ≥ 1 and s2 ≥ 1.
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Case 1: si = s for some i ∈ {1, 2}.

We may assume that s2 = 0 and the case s1 = 0 can be solved using a similar argument.

Notice that for every e ∈M there is at most one potential copy of K3 containing e. Therefore,

N3(G) ≥ sy −m =
sn

2
− s

2

(
4s− 4t− 4m+ n2 − 4t2(n)

)1/2 −m =: f(m).

Then

df(m)

dm
=

s

(4s− 4t− 4m+ n2 − 4t2(n))1/2
− 1.

First let us assume that s ≥ 3. Then

s2 ≥ 4s− 4 + 1 ≥ 4s− 4t− 4m+ n2 − 4t2(n).

Therefore, df(m)
dm > 0 for all m > 0, which implies that f(m) is increasing in m. Therefore, for

s ≥ 3

N3(G) ≥ sn

2
− s

2

(
4s− 4t− 4ms,t + n2 − 4t2(n)

)1/2 −ms,t = s · n−s,t −ms,t.

For the case s = 2, one could easily check that the minimum of f(m) is uniquely attained at

m = ms,t. Therefore, if si = s for some i ∈ {1, 2}, then N3(G) ≥ s ·n−s,t−ms,t for all s > t ≥ 1.
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If N3(G) = s·n−s,t−ms,t, then the argument above shows that we must have |V1| = n−n−s,t =

n+
s,t and |V2| = n−s,t, all edges in B are contained in V1, all pairs in M must be contained in one

potential copy of K3, and no two pairs in the same potential copy. Therefore, G ∼= BMs,t(n).

Case 2: s1 ≥ 1 and s2 ≥ 1.

Notice that for every e ∈M there are at most two potential copies of K3 containing e. Since

x ≥ y, this gives

N3(G) ≥ s1y + s2x− 2m ≥ (s− 1)y + x− 2m

= (s− 2)y + n− 2m

=
sn

2
− s− 2

2

(
4s− 4t− 4m+ n2 − 4t2(n)

)1/2 − 2m =: g(m).

Let us first assume that s ≥ 20. Since

dg(m)

dm
=

s− 2

(4s− 4t− 4m+ n2 − 4t2(n))1/2
− 2.

and

s− 2 > 2 (4s− 4 + 1)1/2 ≥ 2
(
4s− 4t− 4m+ n2 − 4t2(n)

)1/2
,

dg(m)
dm > 0 for m > 0. Therefore, by Lemma 7.2.20,

N3(G) ≥ g(ms,t) = f(ms,t) +
(
4s− 4t− 4ms,t + n2 − 4t2(n)

)1/2 −ms,t ≥ f(ms,t),
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and equality holds iff for some p ∈ N

s− t =


p2 − 1, if n ≡ 0 mod 2,

p(p+ 1)− 1, if n ≡ 1 mod 2.

(?)

For s ≤ 19 a computer-aided calculation shows that f(ms,t) ≤ minm{g(m)} always holds1.

Moreover, the minimum of g(m) is uniquely achieved at m = ms,t except for when (s, t) ∈

{(2, 1), (3, 1), (4, 1)} and n even, or (s, t) ∈ {(3, 2), (4, 1), (5, 1), (6, 1)} and n odd.

If N3(G) = s·n−s,t−ms,t, then the argument above shows that (?) holds, |V1| = n−n−s,t = n+
s,t

and |V2| = n−s,t, exactly one edge e ∈ B is contained in V2, all other edges in B are contained in

V1, and all pairs in M must be contained in two potential copies of K3. Therefore, G ∼= BSs,t(n).

For (s, t) ∈ {(2, 1), (3, 1), (4, 1)} and n even, or (s, t) ∈ {(3, 2), (4, 1), (5, 1), (6, 1)} and n odd,

our bound s · n−s,t −ms,t in Theorem 7.2.4 is also tight, but there are more constructions that

achieve this bound. One could easily recover all these constructions using our calculation file.

7.2.2.3 Proof of Theorem 7.2.5

In this section we prove Theorem 7.2.5. Recall that for n, k ∈ N, qn,k = bn/(k − 1)c and

rn,k = n− (k − 1)qn,k.

Proof of Theorem 7.2.5. Let s ≥ 2, k ≥ 4 be fixed integers and n be sufficiently large. Let

q = qn,k and r = rn,k. Let G be a graph on n vertices with tk−1(n) + s − 1 edges and

1 A simple Mathematica worksheet verifying this fact can be found at the web page

http://homepages.math.uic.edu/~mubayi/papers/ErdosRademacher.pdf.
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τk(G) = s. Notice that Nk(n, s) = (1+o(1))s
(

n
k−1

)k−2
while c(n,Kk) = (1+o(1))

(
n
k−1

)k−2
, so

Nk(n, s) < (s+1/2)·c(n,Kk). Therefore, we may assume thatNk(G) ≤ (s+1/2)·c(n,Kk). So by

Lemma 7.2.19, there exists a partition V (G) = V1∪· · ·∪Vk−1 such that B := G−G[V1, . . . , Vk−1]

is a matching of size s.

Let xi = |Vi| for i ∈ [k − 1] and without loss of generality we may assume that x1 ≥

· · · ≥ xk−1. Let H = G[V1, . . . , Vk−1], M = K[V1, . . . , Vk−1] − H, and m = |M |. Since

tk−1(n)− 1 = |H| = |K[V1, . . . , Vk−1]| −m, we obtain m ∈ {0, 1} and

∑
1≤i<j≤k−1

xixj = tk−1(n)− 1 +m.

Suppose that m = 1. Then
∑

1≤i<j≤k−1 xixj = tk−1(n), so x1 = · · · = xr = q + 1 and

xr+1 = · · · = xk−1 = q.

Let si = |B ∩
(
Vi
2

)
| for i ∈ [k − 1] and S = {i ∈ [k − 1] : si ≥ 1}.

Case 1: |S| = 1.

Let i0 ∈ [k − 1] such that si0 = s. Then there are s ·
∏
i 6=i0 xi potential copies of Kk. Let

uv ∈ M . If uv has empty intersection with all edges in B, then there are at most s · nk−4 =

o(nk−3) potential copies of Kk containing uv. If uv has nonempty intersection with some e ∈ B,
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then every potential copy of Kk that contains uv must contain e as well. So in this case there

are at most
(∏

i 6∈{i0} xi

)
/xk−1 potential copies of Kk containing uv. Therefore,

Nk(G) ≥ s ·
∏
i 6∈{i0}

xi −
1

xk−1

∏
i 6∈{i0}

xi

≥
(
s− 1

xk−1

) k−1∏
i=2

xi =


(
s− 1

q

)
qk−2, if r ≤ 1,

(
s− 1

q

)
(q + 1)r−1qk−r−1, if 2 ≤ r ≤ k − 2,

≥ Nk(n, s),

and equality holds only if r = 1.

Case 2: |S| ≥ 2.

The number of potential copies of Kk is
∑k−1

i=1

(
si ·
∏
j 6=i xj

)
. Suppose that the pair in M

has nonempty intersection with Vi0 and Vi1 for some i0, i1 ∈ [k − 1]. If si0 = 0, then there

are at most
(∏

i 6=i0 xi

)
/xk−1 potential copies of Kk containing the pair in M . If both si0 ≥ 1

and si1 ≥ 1, then there are most 2
∏
i 6=i0,i1 xi potential copies of Kk containing the pair in M .

Therefore,

Nk(G) ≥
k−1∑
i=1

si ·∏
j 6=i

xj

− 2
∏

i 6=i0,i1

xi =

(
k−1∑
i=1

si
xi
− 2

xi0xi1

)
k−1∏
j=1

xj

≥
(
s− 2

x1
+

1

xi0
+

1

xi1
− 2

xi0xi1

) k−1∏
j=1

xj
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Since

1

xi0
+

1

xi1
− 2

xi0xi1
=

1

2
− 2

(
1

2
− 1

xi0

)(
1

2
− 1

xi1

)

is decreasing in xi0 and xi1 ,

1

xi0
+

1

xi1
− 2

xi0xi1
≥ 1

x1
+

1

x2
− 2

x1x2
.

Therefore,

Nk(G) ≥
(
s− 1

x1
+

1

x2
− 2

x1x2

) k−1∏
j=1

xj =



(
s− 2

q

)
qk−2, if r = 0,

(
s− 1

q

)
qk−2, if r = 1,

(
s− 2

q+1

)
(q + 1)r−1qk−r−1, if 2 ≤ r ≤ k − 2.

≥ Nk(n, s).

Note that if s ≥ 3, then the first inequality above is strict since there are copies of Kk in G

containing at least two edges in B.

Now we may assume that m = 0. Then every e ∈ B is contained in at least
∏k−1
i=2 xi copies

of Kk and hence

Nk(G) ≥ s ·
k−1∏
i=2

xi.
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So we just need to find the minimum of
∏k−1
i=2 xi subject to the constraint that

∏k−1
i=1 xi =

tk−1(n)− 1.

If r = 0, then x1 = q + 1, x2 = · · · = xk−2 = q, and xk−1 = q − 1. Therefore,
∏k−1
i=2 xi =

qk−3(q − 1).

If r = 1, then x1 = x2 = q + 1, x3 = · · · = xk−2 = q, and xk−1 = q − 1. Therefore,∏k−1
i=2 xi = qk−4(q + 1)(q − 1).

If r ≥ 2, then

either x1 = · · · = xr+1 = q + 1, xr+2 = · · · = xk−2 = q, xk−1 = q − 1

or x1 = q + 2, x2 = · · · = xr−1 = q + 1, xr = · · · = xk−1 = q.

The later one gives a smaller
∏k−1
i=2 xi, which is (q + 1)r−2pk−r.

Therefore, for the case m = 0

Nk(G) ≥



s · qk−3(q − 1), if r = 0,

s · qk−4(q + 1)(q − 1), if r = 1,

s · (q + 1)r−2qk−r, if 2 ≤ r ≤ k − 2.

≥ Nk(n, s),

and equality only if r 6= 1.
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7.2.2.4 Proof of Theorem 7.2.6

In this section we prove Theorem 7.2.6. Recall that for n, k ∈ N, qn,k = bn/(k − 1)c and

rn,k = n− (k − 1)qn,k. For s > t ≥ 1, k ≥ 3,

Rk(n, s, t) =

(
2(k − 1)(s− t)

k − 2
+

(k − 1− rn,k) rn,k
k − 2

)1/2

,

n+
k,s,t = n+(k−2)Rk(n,s,t)

k−1 , and n−k,s,t = n−Rk(n,s,t)
k−1 .

Proof of Theorem 7.2.6. Let k ≥ 4, s > t ≥ 2 be fixed integers and n be sufficiently large.

Suppose that s > 2Rk(n, s, t). Let q = qn,k, r = rn,k, and R = Rk(n, s, t). Let G be a graph

on n vertices with tk−1(n) + t edges and τk(G) = s. Since s ·
(
n−k,s,t

)
< (s+ 1/2) · c(n,Kk), we

may assume that Nk(G) ≤ (s + 1/2) · c(n,Kk). So by Lemma 7.2.19, there exists a partition

V (G) = V1 ∪ · · · ∪ Vk−1 such that B := G−G[V1, . . . , Vk−1] is a matching of size s.

Let xi = |Vi| for i ∈ [k − 1] and without loss of generality we may assume that x1 ≥

· · · ≥ xk−1. Let H = G[V1, . . . , Vk−1], M = K[V1, . . . , Vk−1] − H, and m = |M |. Since

tk−1(n) + t− s = |H| = |K[V1, . . . , Vk−1]| −m,

∑
1≤i<j≤k−1

xixj = tk−1(n) + t− s+m,

which is equivalent to

k−1∑
i=1

x2
i = n2 − 2tk−1(n) + 2s− 2t− 2m.
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Let si = |B ∩
(
Vi
2

)
| for i ∈ [k − 1] and S = {i ∈ [k − 1] : si ≥ 1}.

Case 1: |S| = 1.

Without loss of generality we may assume that s1 = s since the other cases can be solved

using a similar argument. Notice that there are s ·
∏k−1
i=2 xi potential copies of Kk, and for every

e ∈M there are at most
∏k−2
i=2 xi potential copies of Kk containing e. Therefore,

Nk(G) ≥ s ·
k−1∏
i=2

xi −m ·
k−2∏
i=2

xi =

(
s− m

xk−1

)
·
k−1∏
i=2

xi.

Fix 0 ≤ m ≤ s− t. Let R≥0 be the collection of all nonnegative real numbers. Define

Cm (N) =

{
(x1, . . . , xk−1) ∈ Nk−1 :

k−1∑
i=1

xi = n,

k−1∑
i=1

x2
i = n2 − 2tk−1(n) + 2s− 2t− 2m

}
,

and

Cm (R) =

{
(x1, . . . , xk−1) ∈ Rk−1

≥0 :
k−1∑
i=1

xi = n,
k−1∑
i=1

x2
i = n2 − 2tk−1(n) + 2s− 2t− 2m

}
.

Note that Cm (N) ⊂ Cm (R). In order to get a lower bound for Nk(G) we need to solve the

following optimization problem.

OPTA
m :


Minimize

(
s− m

xk−1

)
·
∏k−1
i=2 xi

subject to (x1, . . . , xk−1) ∈ Cm (N) .
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However, it is not easy to get an optimal solution for OPTA
m. So we are going to consider the

following two auxiliary optimization problems. Let

OPTB
m :


Minimize

(
s− m

xk−1

)
·
∏k−1
i=2 xi

subject to (x1, . . . , xk−1) ∈ Cm (R) ,

and

OPTC
m :


Minimize

∏k−1
i=2 xi

subject to (x1, . . . , xk−1) ∈ Cm (R) .

Let opta
m, optb

m, and optc
m denote the optimal value of the optimization problems OPTA

m,

OPTB
m, OPTC

m, respectively. It is easy to see that opta
m ≥ optb

m. Moreover, if OPTB
m has an

optimal solution x1, . . . , xk−1 such that xi ∈ N, then opta
m = optb

m. Our goal is to find optb
m

and it will be a lower bound for Nk(G).

Claim 7.2.21. There exists a constant C ′ > 0 such that

(
s− k − 1

n
m

)
· optc

m − C ′nk−4 < optb
m ≤

(
s− k − 1

n
m

)
· optc

m + C ′nk−4.
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Proof. We abuse notation by assuming that x1, . . . , xk−1 is an optimal solution of OPTB
m. Since∑

1≤i<j≤k−1 xixj = tk−1(n) + t− s+m > tk−1(n)− s, by Lemma 7.2.13, n/(k − 1)− s ≤ xi ≤

n/(k − 1) + s for all i ∈ [k − 1]. Therefore,

optb
m =

(
s− m

xk−1

)
·
k−1∏
i=2

xi ≥
(
s− m

n/(k − 1)− s

)
·
k−1∏
i=2

xi

=

(
s− (k − 1)m

n

)
·
k−1∏
i=2

xi −
(k − 1)2sm

n(n− ks+ s)
·
k−1∏
i=2

xi

>

(
s− (k − 1)m

n

)
·
k−1∏
i=2

xi − C ′nk−4

≥
(
s− (k − 1)m

n

)
· optc

m − C ′nk−4,

where C ′ is a constant depending only on k, s,m.

Now let x′1, . . . , x
′
k−1 be an optimal solution of OPTC

m. Then similarly we have

(
s− (k − 1)m

n

)
· optc

m =

(
s− m

n/(k − 1)

)
·
k−1∏
i=2

x′i

≥

(
s− m

x′k−1 − s

)
·
k−1∏
i=2

x′i

=

(
s− m

x′k−1

)
·
k−1∏
i=2

x′i −
sm

x′k−1(x′k−1 + s)

k−1∏
i=2

x′i ≥ optb
m − C ′nk−4.

Claim 7.2.21 shows that optb
m =

(
s− k−1

n m
)
·optc

m±C ′nk−4. So we could view
(
s− k−1

n m
)
·

optc
m as a ”trajectory” (in other words, the ”expected” value) for optb

m, and this will be useful

later for us to show that optb
m−1 ≤ optb

m.
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Let us solve the optimization problem OPTC
m first. We use the Lagrangian multiplier

method. Let

L(~x, λ, µ) =

k−1∏
i=2

xi + λ

(
k−1∑
i=1

xi − n

)
+ µ

(
k−1∑
i=1

x2
i −

(
n2 − 2tk−1(n) + 2s− 2t− 2m

))
.

Again, we abuse notation here by assuming that (x1, . . . , xk−1) ∈ Cm(R) is an optimal solution

of OPTC
m. Then by the Lagrangian multiplier method,



∂L
∂x1

= λ+ 2µx1 = 0⇒ x1 = − λ
2µ ,

∂L
∂xj

=
∏k−1
i=2 xi
xj

+ λ+ 2µxj = 0,

∂L
∂λ =

∑k−1
i=1 xi − n = 0,

∂L
∂µ =

∑k−1
i=1 x

2
i −

(
n2 − 2tk−1(n) + 2s− 2t− 2m

)
= 0.

Note that x1 6= 0 so it is an interior point and hence we can apply the Lagrangian multiplier

here.

Let π =
∏k−1
i=2 xi. Note that the equation

π

x
+ λ+ 2µx = 0

has only two solutions

x′ =
−λ+

√
λ2 − 8µπ

4µ
and x′′ =

−λ−
√
λ2 − 8µπ

4µ
.
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Therefore, referring to ∂L/∂xj , for every 2 ≤ j ≤ k − 1 either xj = x′ or xj = x′′.

Before we state the next claim let us recall from the beginning of Case 1 that s1 = s.

Claim 7.2.22. x1 ≥ x2 = · · · = xk−1.

Proof. First we show that x1 ≥ xi for all 2 ≤ i ≤ k − 1. Suppose to the contrary that there

exists some i ∈ [k − 1] \ {1} such that xi > x1, and without loss of generality we may assume

that x2 > x1. Then let x′i = xi for 3 ≤ i ≤ k − 1, x′1 = x2, and x′2 = x1. It is clear

that (x′1, . . . , x
′
k−1) ∈ Cm(R), but

∏k−1
i=2 x

′
i <

∏k−1
i=2 xi, which contradicts our assumption that

(x1, . . . , xk−1) is an optimal solution of OPTC
m. Therefore, x1 ≥ xi for all 2 ≤ i ≤ k − 1.

Now we show that x2 = · · · = xk−1. Suppose that xi1 6= xi2 for some 2 ≤ i1 < i2 ≤

k − 1. Then {xi1 , xi2} = {x′, x′′}, which implies that xi1 + xi2 = −λ/(2µ) = x1. Since∑
1≤i<j≤k−1 xixj = tk−1(n) + t − s + m > tk−1(n) − s, by Lemma 7.2.13, |xi − n/(k − 1)| < s

for all i ∈ [k − 1]. Therefore,

xi1 + xi2 > 2× n

k − 1
− 2s >

n

k − 1
+ s > x1,

a contradiction. Therefore, x2 = · · · = xk−1.

By Lemma 7.2.11,

n2 − 2tk−1(n) =
n2

k − 1
+

(k − 1− r)r
k − 1

.
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Let x = x1, y = x2 = · · · = xk−1. Since (x1, . . . , xk−1) ∈ Cm(R),



x+ (k − 2)y = n,

x2 + (k − 2)y2 = n2

k−1 + (k−1−r)r
k−1 + 2s− 2t− 2m,

xi ≥ 0,∀i ∈ [k − 1],

which implies


x = n

k−1 + (k − 2)∆m

y = n
k−1 −∆m,

where

∆m :=
(2(k − 1)(k − 2)(s− t−m) + (k − 2)(k − 1− r)r)1/2

(k − 1)(k − 2)
.

Therefore,

optc
m = yk−2 =

(
n

k − 1
−∆m

)k−2

.

Now we are going to use optc
m to describe the behavior of optb

m.

Claim 7.2.23. The value optb
m is strictly increasing in m. In particular, optb

0 < optb
m for all

m > 0.
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Proof. Since

optc
m =

(
n

k − 1
−∆m

)k−2

=

(
n

k − 1

)k−2

− (k − 2)∆m

(
n

k − 1

)k−3

+ Θ(nk−4),

by Claim 7.2.21, there exists a constant C ′ > 0 such that

optb
m =

(
s− k − 1

n
m

)
· optc

m ± C ′nk−4

= s

(
n

k − 1

)k−2

− (m+ s(k − 2)∆m)

(
n

k − 1

)k−3

± C ′′nk−4,

where C ′′ > C ′ is a constant depending only on s, k,m. Therefore,

optb
m−1 − optb

m = (1− s(k − 2) (∆m−1 −∆m))

(
n

k − 1

)k−3

± 2C ′′nk−4.

Now view ∆m as a function of the variable m. Then it is easy to see that ∆m is concave down,

i.e. d2∆m/dm
2 < 0 for 0 ≤ m ≤ s− t. Therefore,

s(k − 2) (∆m−1 −∆m) ≥ s(k − 2)(−1) · d∆m

dm

∣∣∣∣
m=0

=
s(k − 2)

(2(k − 1)(k − 2)(s− t) + (k − 2)(k − 1− r)r)1/2
.

Since

s > 2R = 2
(2(k − 1)(k − 2)(s− t) + (k − 2) (k − 1− r) r)1/2

k − 2
,
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we obtain s(k − 2) (∆m−1 −∆m) > 2. Therefore,

1− s(k − 2) (∆m−1 −∆m) < −1, (∗)

and hence optb
m−1 − optb

m < − (n/(k − 1))k−3 + Θ(nk−4) < 0.

Therefore,

Nk(G) ≥ opta
m ≥ optb

m ≥ optb
0 = s · optc

0 = s ·
(

n

k − 1
−∆0

)k−2

= s ·
(
n−k,s,t

)k−2
.

Here we used that fact that ∆0 = R/(k − 1).

Case 2: |S| ≥ 2.

The number of potential copies of Kk is
∑k−1

i=1

(
si ·
∏
j 6=i xj

)
. Suppose that uv ∈M satisfies

u ∈ Vi0 and v ∈ Vi1 for some i0, i1 ∈ [k − 1]. Similar to the proof of Theorem 7.2.6 we may

assume that si0 ≥ 1 and si1 ≥ 1. Then there are at most
∏
i 6=i0,i1 xi potential copies of Kk

containing uv. Therefore,

Nk(G) ≥
k−1∑
i=1

si ·∏
j 6=i

xj

− 2
∑
uv∈M

∏
i 6=i0,i1

u∈Vi0 ,v∈Vi1

xi =

k−1∑
i=1

si
xi
−

∑
uv∈M

u∈Vi0 ,v∈Vi1

2

xi0xi1

 k−1∏
i=1

xi.
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We abuse notation by assuming that xi0xi1 = min{xixj : ∃uv ∈ M such that u ∈ Vi, v ∈ Vj}.

Then

Nk(G) ≥

(
k−1∑
i=1

si
xi
− 2m

xi0xi1

)
k−1∏
i=1

xi =

(
s− 2

x1
+

1

xi0
+

1

xi1
− 2m

xi0xi1

) k−1∏
i=1

xi.

Since

1

xi0
+

1

xi1
− 2m

xi0xi1
=

1

2m
− 2m

(
1

2m
− 1

xi0

)(
1

2m
− 1

xi1

)
,

is decreasing in xi0 and xi1 ,

1

xi0
+

1

xi1
− 2m

xi0xi1
≥ 1

x1
+

1

x2
− 2m

x1x2
.

Therefore,

Nk(G) ≥
(
s− 1

x1
+

1

x2
− 2m

x1x2

) k−1∏
i=1

xi

=

(
s

x1
+
x1 − x2

x1x2
− 2m

x1x2

) k−1∏
i=1

xi =

(
s+

x1 − x2

x2
− 2m

x2

) k−1∏
i=2

xi.
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Therefore, in order to get a lower bound for Nk(G) we need solve the following optimization

problem.

OPTD
m :


Minimize

(
s+ x1−x2

x2
− 2m

x2

)∏k−1
i=2 xi

subject to (x1, . . . , xk−1) ∈ Cm(N).

Similarly, we are going to consider the following auxiliary optimization problem.

OPTE
m :


Minimize

(
s+ x1−x2

x2
− 2m

x2

)∏k−1
i=2 xi

subject to (x1, . . . , xk−1) ∈ Cm(R).

Theoretically, one could solve OPTE
m exactly using the Lagrange multiplier method. However,

the optimal solution of OPTE
m is very complicated. So we are going to compare OPTE

m with

OPTC
m.

Let optd
m and opte

m denote the optimal values of the optimization problems OPTD
m and

OPTE
m, respectively. It is easy to see that optd

m ≥ opte
m. The following claim is very similar to

Claim 7.2.21, and can be proved in a similar fashion so so we omit the proof.

Claim 7.2.24. There exists a constant Ĉ > 0 such that

(
s− 2(k − 1)m

n

)
· optc

m − Ĉnk−4 < opte
m ≤

(
s− 2(k − 1)m

n

)
· optc

m + Ĉnk−4.
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Claim 7.2.25. The value opte
m is strictly increasing in m. In particular, opte

0 < opte
m for all

m > 0.

Proof. The proof is basically the same as the proof for Claim 7.2.23. The only difference is that

s > 2R implies that there exists ε > 0 such that s(k− 2) (∆m−1 −∆m) > 2 + ε. Therefore, (∗)

now becomes

2− s(k − 2) (∆m−1 −∆m) < −ε,

which implies that

optb
m−1 − optb

m = (2− s(k − 2) (∆m−1 −∆m))

(
n

k − 1

)k−3

± 2C ′nk−4

< −ε (n/(k − 1))k−3 + Θ(nk−4) < 0.

Therefore, if s > 2R, then

Nk(G) ≥ optd
m ≥ opte

m ≥ opte
0 ≥ s · optc

0 = s ·
(

n

k − 1
−∆0

)k−2

= s ·
(
n−k,s,t

)k−2
.

Note that we may assume that s− t ≥ 2 since the case s− t = 1 has been solved by Theorem

7.2.5. Therefore, there exists copies of Kk in G that contains at least two edges in B, which

implies that the first inequality above is strict.
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7.2.2.5 Proof of Theorem 7.2.9

In this section we prove Theorem 7.2.9. We need the following lemma.

Lemma 7.2.26 ([194]). Fix k ≥ 3 and a k-critical graph F with f vertices. Then there are

positive constants αF and βF such that if n is sufficiently large, then |c(n, F ) − αFn
f−2| <

βFn
f−3.

Now we are ready to prove Theorem 7.2.9.

Proof of Theorem 7.2.9. Let s > t ≥ 1, k ≥ 3 be fixed integers and let F be a k-critical graph

on f vertices. Let n be sufficiently large. Let G be a graph on n vertices with tk−1(n) + t edges

and τF (G) = s. We may assume that NF (G) ≤ s · c(n, F ), since otherwise we are done.

By Lemma 7.2.19, there exists a partition V (G) = V1 ∪ · · · ∪ Vk−1 such that B := G −

G[V1, . . . , Vk−1] is a matching of size s. Let xi = |Vi| for i ∈ [k−1] and without loss of generality

we may assume that x1 ≥ · · · ≥ xk−1. Let H = G[V1, . . . , Vk−1], M = K[V1, . . . , Vk−1]−H, and

m = |M |. Since tk−1(n)− t = |H| = |K[V1, . . . , Vk−1]| −m,

∑
1≤i<j≤k−1

xixj = tk−1(n) + t− s+m.

Therefore, by Lemma 7.2.13, n/(k − 1)− s < xi < n/(k − 1) + s for all i ∈ [k − 1]. Let

cmin = min{c(xσ(1), . . . , xσ(k−1)) : σ ∈ Sk−1},
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where Sk−1 is the collection of all permutations of [k − 1]. By Lemma 7.2.12, cmin ≥ c(n, F )−

γF sn
f−3 for some constant γF . Note the the number of potential copies of Kk is at least s ·cmin.

Since every e ∈M is contained in at most nf−3 potential copies of Kk,

NF (G) ≥ s · cmin −mnf−3 ≥ s · c(n, F )− Cnf−3

for some constant C. This completes the proof of Theorem 7.2.9.

7.2.3 Concluding remarks

We proved several bounds on the number of copies of Kk (and also for k-critical graphs

F ) in a graph G on n vertices with tk−1(n) + t edges and τk(G) = s. In our proof we need s

and t to be fixed. Using the same method we are able to show that the same conclusions as in

Theorems 7.2.4, 7.2.5, 7.2.6, and 7.2.9 hold for all s > t ≥ 1 (for Theorem 7.2.6 we still need

s > 2Rk(n, s, t)) as long as s(s − t)1/2 < ξn for some small constant ξ > 0. In particular, if

s− t < C for some constant C, then the conclusions hold for all s < ξ′n for some small constant

ξ′ > 0. The proofs are more involved and tedious, so we chose to omit them here.
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8.1 The feasible region of induced graphs

8.1.1 Introduction

8.1.1.1 Feasible regions

A quantum graphQ is a formal linear combination of finitely many graphs, i.e., an expression

of the form

Q =
m∑
i=1

λiFi ,

where m is a nonnegative integer, the numbers λ1, . . . , λm are real, and F1, . . . , Fm are graphs.

We call Fi a constituent of Q if λi 6= 0. Two quantum graphs Q, Q′ are equal if they have the

same constituents and the same (nonzero) coefficients for each constituent. The complement

of Q is Q =
∑m

i=1 λiF i, where F i denotes the complement of Fi for each i ∈ [m]. A quantum

graph Q is self-complementary if Q = Q. Every graph parameter f can be extended linearly to

quantum graphs by stipulating f(Q) =
∑m

i=1 λif(Fi). In particular,

N(Q,G) =
m∑
i=1

λiN(Fi, G) and ρ(Q,G) =
m∑
i=1

λiρ(Fi, G) .

The main notion investigated in this article is the following.

Definition 8.1.1 (Feasible region). Let Q =
∑m

i=1 λiFi be a quantum graph.

• A sequence (Gn)∞n=1 of graphs is Q-good if limn→∞ v(Gn) = ∞, limn→∞ ρ(Gn) exists,

and for every i ∈ [m] the limit limn→∞ ρ(Fi, Gn) exists.
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• A Q-good sequence of graphs (Gn)∞n=1 realizes a point (x, y) ∈ [0, 1]× R if

lim
n→∞

ρ(Gn) = x and lim
n→∞

ρ(Q,Gn) = y.

• The feasible region Ωind(Q) of (induced) Q is the collection of points (x, y) ∈ [0, 1] × R

realized by some Q-good sequence (Gn)∞n=1.

We commence a systematic study of the feasible region of quantum graphs Q. As we shall

see soon, Ωind(Q) is determined by its boundary, so it suffices to consider for every x ∈ [0, 1]

the numbers

i(Q, x) = inf{y : (x, y) ∈ Ωind(Q)} and I(Q, x) = sup{y : (x, y) ∈ Ωind(Q)} .

Determining the values of i(Q, x) and I(Q, x) under some constraints is a central topic in

extremal combinatorics. For example, the classical Kruskal-Katona theorem [131; 154] implies

I(Kr, x) = xr/2 for all r ≥ 2 and x ∈ [0, 1] .

Turán’s seminal theorem [241] and supersaturation show that for every integer r ≥ 3,

i(Kr, x) > 0 ⇐⇒ x > (r − 2)/(r − 1) .
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Determining i(Kr, x) for all x > (r− 2)/(r− 1) is highly nontrivial and was solved for r = 3 by

Razborov [216], for r = 4 by Nikiforov [201], and for all r by Reiher [217].

Regarding quantum graphs with at least two constituents, a classical result of Good-

man [115] says that i(K3 + K3, x) ≥ 1/4 and equality holds only for x = 1/2. Erdős [57]

conjectured that i(Kr + Kr, x) ≥ 21−(r2) for r ≥ 4 with equality for x = 1/2. This conjecture

was disproved by Thomason [238] for all r ≥ 4, but even for r = 4 the minimum value of

i(Kr +Kr, x) is still unknown.

For a single graph F the function I(F, x) is closely related to the inducibility

ind(F ) = lim
n→∞

max {ρ(F,G) : v(G) = n}

of F introduced by Pippenger and Golumbic [211]. In fact, ind(F ) = max{I(F, x) : x ∈ [0, 1]},

where the maximum exists due to the continuity of I(F, x) (see Theorem 8.1.2 below).

Determining the feasible region Ωind(F ) of a single graph F is a special case of the more

general problem to determine the graph profile T (F) of a given finite family of graphs F =

{F1, . . . , Fk}. Here T (F) ⊆ [0, 1]k is the collection of limit points of ((ρ(F1, Gi), . . . , ρ(Fk, Gi)))
∞
i=1

with v(Gi)→∞. Besides the clique density theorem, very few results are known about graph

profiles (see [121; 127; 33; 120]).

Our results are of two flavors.
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• We prove some general results about the shape of Ωind(Q). Our main result here is The-

orem 8.1.2, which states that I(Q, x) and i(Q, x) are continuous and almost everywhere

differentiable.

• We study Ωind(Q) for some specific choices of Q for which ind(Q) has been investigated

by many researchers. We focus on quantum graphs whose constituents are complete

multipartite graphs and prove a general upper bound for I(Q, x). Prior to this work,

Ωind(F ) for a single graph F was determined only when F is a clique or an independent

set. Here we extend this to the case F = K1,2 and also obtain results for complete

bipartite graphs. Furthermore we study Ωind(K−r ), where K−r arises from the clique Kr

by the deletion of a single edge. As a consequence of our results, we determine the

inducibility ind(K−r ), which is new for r ≥ 5.

8.1.1.2 General results

The following result describes the shape of the feasible region of an arbitrary quantum

graph.

Theorem 8.1.2. For every quantum graph Q we have

Ωind(Q) =
{

(x, y) ∈ [0, 1]× R : i(Q,F ) ≤ y ≤ I(Q,F )
}
.

Moreover, the boundary functions i(Q, x) and I(Q,F ) are continuous and almost everywhere

differentiable.
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In contrast to Theorem 8.1.2 Hatami and Norin [120] gave an example of a finite family

F of graphs such that the intersection of the graph profile T (F) with some hyperplane has a

nowhere differentiable boundary.

For every quantum graph Q the feasible regions of Q, −Q and Q are closely related. Indeed,

using the formulae

N(F,G) = N(F ,G) and ρ(F,G) = ρ(F ,G),

which are valid for all graphs F and G, one easily confirms the following observation.

Fact 8.1.3. Let Q be a quantum graph.

(a) The feasible regions of Q and −Q are symmetric to each other about the x-axis. Hence,

I(−Q, x) = −i(Q, x) and i(−Q, x) = −I(Q, x) hold for all x ∈ [0, 1].

(b) The feasible regions of Q and Q are symmetric to each other about the line x = 1/2. Thus

we have I(Q, x) = I(Q, 1−x) and i(Q, x) = i(Q, 1−x) for every x ∈ [0, 1]. In particular,

if Q is self-complementary, then I(Q, x) = I(Q, 1− x) and i(Q, x) = i(Q, 1− x), i.e. the

functions I(Q, x) and i(Q, x) are symmetric around x = 1/2.

The next result shows that for most single graphs F the lower boundary function i(F, x)

vanishes identically. The only exceptions occur when F is a clique and i(F, x) is given by the

clique density theorem (see Theorem 8.1.10), or if F is the complement of a clique and i(F, x)

is given by the Kruskal–Katona theorem (and Fact 8.1.3 (b)).
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Proposition 8.1.4. If F denotes a graph which is neither complete nor empty, then i(F, x) = 0

for all x ∈ [0, 1].

We proceed with some estimates based on random graphs. Given a quantum graph Q =∑m
i=1 λiFi we define

rand(Q, x) =
∑
i∈[m]

λi
(v(Fi))!

|Aut(Fi)|
xe(Fi)(1− x)e(F i) for every x ∈ [0, 1] ,

where Aut(Fi) is the automorphism group of Fi for i ∈ [m]. Equivalently,

rand(Q, x) = lim
n→∞

E ρ(Q,G(n, x)) ,

where G(n, x) denotes the standard binomial random graph. It is well known that the random

variables ρ(G(n, x)), ρ(Q,G(n, x)) are tightly concentrated around their expectations. This

shows the following observation.

Fact 8.1.5. If Q denotes a quantum graph and x ∈ [0, 1], then

I(Q, x) ≥ rand(Q, x) ≥ i(Q, x) .

In particular, for a single graph F the inequality I(F, x) > 0 holds for all x ∈ (0, 1).

Let P4,1 be the 5-vertex graph that is the disjoint union of a path on 4 vertices and an

isolated vertex. It was asked in [79] whether the inducibility of some graph is achieved by a
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random graph and, in particular, whether the inducibility ind(P4,1) is achieved by the Erdős–

Rényi random graph G(n, 3/10). Here we pose an easier question of a similar flavor.

Problem 8.1.6. Do there exist a graph F and some x ∈ (0, 1) such that I(F, x) = rand(F, x)?

8.1.1.3 Complete multipartite graphs

We now present our results on I(Q, x) for specific quantum graphs Q. Our focus is on

quantum graphs whose constituents are complete multipartite graphs (a graph whose edge set

is empty is viewed as complete multipartite with only one part). A case of particular interest

is Q = Kr + Kr for r ≥ 3. Goodman [115] proved that for every graph G on n vertices

ρ(K3 + K3, G) ≥ 1/4 + o(1) and the random graph G(n, 1/2) shows that this bound is tight.

Therefore, i(K3 + K3, x) ≥ 1/4 and equality holds when x = 1/2. Combining Goodman’s

result [115] with a theorem of Olpp [206] one can determine Ωind(K3 +K3) completely.

10

1

1
4

Figure 25. Ωind(K3 +K3) is the shaded area above.
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Theorem 8.1.7 (Goodman [115], Olpp [206]). For every x ∈ [0, 1] we have

i(K3 +K3, x) = 1− 3x+ 3x2 and

I(K3 +K3, x) = 1− 3 min
{
x− x3/2, (1− x)− (1− x)3/2

}
.

For r ≥ 4 determining Ωind(Kr +Kr) seems beyond current methods.

Problem 8.1.8. Determine Ωind(Kr +Kr) for r ≥ 4.

Another well-studied problem concerns the determination of Ωind(Kr) for r ≥ 3. We already

mentioned that I(Kr, x) = xr/2 follows from the Kruskal-Katona theorem [154; 132]. For the

lower bound i(Kr, x) we consider (independently of r) the following complete multipartite

graphs.

Definition 8.1.9. For integers n ≥ k ≥ 2 and real x ∈
(
k−2
k−1 ,

k−1
k

]
let H?(n, x) be the com-

plete k-partite graph on n vertices with parts V1, . . . , Vk of sizes |V1| = · · · = |Vk−1| = bαknc and

|Vk| = n− (k − 1)bαknc, where

αk =
1

k

(
1 +

√
1− k

k − 1
x

)
.

Moreover, H?(n, 0) and H?(n, 1) denote the empty and the complete graph on n vertices.

One checks immediately that limn→∞ ρ(H?(n, x)) = x holds for every x ∈ [0, 1]. Conse-

quently, for every r ≥ 2 the function gr(x) = limn→∞ ρ(Kr, H
?(n, x)) is an upper bound on

i(Kr, x).
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A more explicit description of gr is as follows. Clearly gr(x) = 0 holds for every x ≤ r−2
r−1

and g(1) = 1. If x ∈
(
r−2
r−1 , 1

)
there exists a unique integer k ≥ r such that x ∈

(
k−2
k−1 ,

k−1
k

]
and

a short calculation reveals

gr(x) =
(k)r
kr

(
1 +

√
1− k

k − 1
x

)r−1(
1− (r − 1)

√
1− k

k − 1
x

)
,

where (k)r = k(k − 1) · · · (k − r + 1). Lovász and Simonovits conjectured in the seventies that

this function coincides with i(Kr, x) and the third author proved that this is indeed the case.

Theorem 8.1.10 (Clique density theorem, Reiher [217]). For all integers r ≥ 3 and real

x ∈ [0, 1] we have i(Kr, x) = gr(x).

The non-asymptotic problem to determine for given natural numbers n and m the exact

minimum number of r-cliques an n-vertex graph with m edges needs to contain is still wide open

in general. But for triangles there has recently been spectacular progress by Liu, Pikhurko, and

Staden [158].

Easy calculations show that the function gr(x) is non-differentiable at the critical values

x = 1− 1/q, where q ≥ r− 1 denotes an integer. Moreover, gr(x) is piecewise concave between

any two consecutive critical values. An old result of Bollobás [25] (proved long before the clique

density theorem) asserts that the piece-wise linear function interpolating between the critical

values of gr(x) is a lower bound on i(Kr, x). Here we extend this result to quantum graphs

whose constituents are complete multipartite graphs.
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To state this generalization we need the following concepts. For every positive integer r ≥ 2

and every quantum graph Q we define the complete r-partite feasible region Ωind−r(Q) to be the

collection of all points in [0, (r− 1)/r]×R that can be realized by a Q-good sequence (Gn)∞n=1

of complete r-partite graphs (isolated vertices are not allowed). For x ∈ [0, (r − 1)/r], let

ir(Q, x) = inf{y : (x, y) ∈ Ωind−r(Q)} and Ir(Q, x) = sup{y : (x, y) ∈ Ωind−r(Q)} .

Optimizing over r we put

m(Q, x) = inf

{
ir(Q, x) : r ≥

⌈
1

1− x

⌉}
and M(Q, x) = sup

{
Ir(Q, x) : r ≥

⌈
1

1− x

⌉}

for every quantum graph Q and every real x ∈ [0, 1) as well as

m(Q, 1) = M(Q, 1) = lim
n→∞

ρ(Q,Kn) .

Clearly, we have

i(Q, x) ≤ m(Q, x) ≤M(Q, x) ≤ I(Q, x) .

Next we observe that for every bounded function f : [0, 1] −→ R there exist a point-wise

minimum concave function cap(f) ≥ f and, similarly, a maximum convex function cup(f) ≤ f .

In fact, cap(f) is given by

cap(f)(x) = sup
{
λ1f(x1) + · · ·+ λnf(xn) : n ≥ 1, (λ1, . . . , λn) ∈ ∆n−1, and

n∑
i=1

λixi = x
}
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for all x ∈ [0, 1], where

∆n−1 =
{

(λ1, . . . , λn) ∈ [0, 1]n : λ1 + · · ·+ λn = 1
}

denotes the (n − 1)-dimensional standard simplex. Moreover, replacing the supremum by an

infimum one obtains a formula for cup(f)(x).

Theorem 8.1.11. Let Q =
∑m

i=1 λiFi be a quantum graph all of whose constituents are com-

plete multipartite graphs.

(a) If every Fi with λi > 0 is complete, then

i(Q, x) ≥ cup (m(Q, x)) for all x ∈ [0, 1] .

(b) If every Fi with λi < 0 is complete, then

I(Q, x) ≤ cap (M(Q, x)) for all x ∈ [0, 1] .

The aforementioned result of Bollobás is the case Q = Kr of Theorem 8.1.11 (a).

8.1.1.4 Almost complete graphs

For every integer t ≥ 3 we let K−t denote the graph obtained from a clique Kt by deleting

one edge. As these graphs are neither complete nor empty, Proposition 8.1.4 tells us that the

feasible regions Ωind(K−t ) are completely determined by the functions I(K−t , x). For t = 3
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we have the following exact result showing that the graphs H?(n, x) minimizing the triangle

density also maximize the induced K−3 -density.

Theorem 8.1.12. The equality I(K−3 , x) = 3
2 (x− g3(x)) holds for all x ∈ [0, 1].

11
2

2
3

3
4

4
5

0

3
4

Figure 26. Ωind(K−3 ).

For t ≥ 4 we show a piecewise linear upper bound on I(K−t , x) that yields the correct value

of the inducibility ind(K−t ). In the statement that follows, we set

k(t) =


d(t+ 1)(3t− 8)/6e if t 6= 5, 8, 11, 14, 17, 20

(t− 2)(3t+ 1)/6 if t = 5, 8, 11, 14, 17, 20.
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Theorem 8.1.13. For all t ≥ 4 and x ∈ [0, 1] we have I(K−t , x) ≤ ht(x), where ht denotes the

piecewise linear function interpolating between ht(0) = 0 and

ht(1− 1/r) =

(
t

2

)
(r − 1)t−2

rt−1
for r ≥ k(t) .

Furthermore,

ind(K−t ) =

(
t

2

)
(q(t)− 1)t−2

q(t)t−1
, where q(t) = d(t− 2)(3t+ 1)/6e . (8.1)

For instance, for t = 4 we have q(4) = 5 and, hence, ind(K−4 ) = 72/125. This was originally

proved by Hirst [124], whose computer assisted argument is based on the flag algebra method.

Moreover, Theorem 8.1.13 yields the upper bound I(K−4 , x) ≤ 3x/4 for x ∈ [0, 3/4]. For small

values of x we have the following stronger bound.

Proposition 8.1.14. If x ∈ [0, 1/2], then I(K−4 , x) ≤ 3x2/2.

Finally, we remark that our determination of ind(K−t ) in Equation 8.1 implies

lim
t→∞

ind(K−t ) = 1/e . (8.2)

This is closely related to the so-called edge-statistics conjecture of Alon, Hefetz, Krivelevich,

and Tyomkyn [7]. Given positive integers k and ` ≤
(
k
2

)
let the quantum graph Qk,` be the

sum of all k-vertex graphs with ` edges. Alon et al. conjectured ind(Qk,`) ≤ 1/e + ok(1) and

proved this for some range of `. Following the work of Kwan, Sudakov, and Tran [156], the edges
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Figure 27. Ωind(K−4 ) is contained in the shaded area above.

statistics conjecture was resolved by Fox and Sauermann [86] and, independently, by Martinsson,

Mousset, Noever, and Trujić [187]. Part of the original motivation for the edges statistics

conjecture was the observation that for ` = 1 we have Qk,1 = K−k and rand(K−k , 1/
(
k
2

)
) →

1/e as k → ∞. Thus the asymptotic formula Equation 8.2 follows from the results in [86;

187]. However, the exact values ind(K−5 ) = 525/1024, ind(K−6 ) = 178200/135, etc. implied by

Theorem 8.1.13 are new.

8.1.1.5 Stars

A second case of asymptotic equality in the edge-statistics conjecture occurs for stars. For

every positive integer t we denote the star with t edges by St. As the case S1 = K2 is trivial,

we may assume t ≥ 2 in the sequel. A quick calculation shows that the induced St-density

of a complete bipartite graph the sizes of whose vertex classes have roughly the ratio 1 : t is

1/e+ ot(1).
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A precise formula for the inducibility of stars was discovered by Brown and Sidorenko [31]

(see Theorem 8.1.34 below). Here we shall show that for small densities x the values I(St, x)

of the upper bound function of the feasible region are realized by complete bipartite graphs.

Toward this goal we consider for every real x ∈ [0, 1/2] a sequence (B(n, x))∞n=1 of complete

bipartite graphs with v(B(n, x)) = n for every n ∈ N and limn→∞ ρ(B(n, x)) = x. The vertex

classes of B(n, x) have the sizes αn and (1 − α)n for some α ∈ [0, 1/2] satisfying α(1 − α) =

x/2 + o(1). Since ρ(St, B(n, x)) = (t + 1)
(
α(1 − α)t + (1 − α)αt

)
+ on(1) we are lead to the

function st : [0, 1/2] −→ R defined by

st(x) = lim
n→∞

ρ(St, B(n, x)) =
t+ 1

2t
x
((

1−
√

1− 2x
)t−1

+
(
1 +
√

1− 2x
)t−1

)
. (8.3)

As we shall show in Section 8.1.5, there is a unique point x = x?(t) ∈ [0, 1/2] at which st(x)

attains its maximum. Moreover,

x?(2) = x?(3) =
1

2
and

2t

(t+ 1)2
< x?(t) <

2

t+ 1
holds for t ≥ 4 .

Using Theorem 8.1.11 we determine I(St, x) for x ∈ [0, x?(t)].

Theorem 8.1.15. If t ≥ 2 is an integer and x ∈ [0, x?(t)], then I (St, x) = st(x).

Notice that for t = 2 this tells us I(K−3 , x) = 3x/2 for x ∈ [0, 1/2], which follows from

Theorem 8.1.12 as well. It seems hard to determine I(St, x) for t ≥ 3 and x ≥ x?(t) (some

remarks on this problem are given in Section 8.1.7).
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For future reference it is convenient to extend the definitions of this subsection to the trivial

case t = 1 by setting x?(1) = 1/2 and s1(x) = x for every x ∈ [0, 1/2] (which is one half of the

values one would obtain by plugging t = 1 into Equation 8.3). It is then still true that we have

I (S1, x) = s1(x) for every x ∈ [0, x?(1)] and that equality holds for the sequence (B(n, x))∞n=1

of bipartite graphs.

8.1.1.6 Complete bipartite graphs

For positive integers s and t let Ks,t denote the complete bipartite graph whose vertex

classes are of size s and t. So K1,t = St is a star and it turns out that the calculation of

I(Ks,t, x) reduces to I(S|s−t|+1, x) for x ∈ [0, x?(|s− t|+ 1)].

Theorem 8.1.16. Let t ≥ s ≥ 2 be integers. Then for every x ∈ [0, 1] we have

I(Ks,t, x) ≤ 1

2s−1(t− s+ 2)

(
s+ t

s

)
xs−1I(St−s+1, x),

and equality holds for x ≤ x?(t− s+ 1). In particular, for x ∈ [0, x?(t− s+ 1)],

I(Ks,t, x) =


1
2t

(
2t
t

)
xt if t = s,

1
2t

(
s+t
s

)
xs
((

1−
√

1− 2x
)t−s

+
(
1 +
√

1− 2x
)t−s)

if t > s.

The remainder of this subsection focuses on the case s = t = 2. Observe that K2,2 = C4 is

a four-cycle. Theorem 8.1.16 yields I(C4, x) = 3x2/2 for every x ∈ [0, 1/2], where equality is

achieved by the sequence (B(n, x))∞n=1 of bipartite graphs. For x ≥ 1/2 we believe that I(C4, x)

is related to the constructions for the clique density theorem (see Construction 8.1.9).
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Conjecture 8.1.17. For every real number x ∈ [1/2, 1] we have

I(C4, x) = lim
n→∞

ρ (C4, H
?(n, x)) .

This conjecture predicts I(C4, 1− 1/k) = 3(k − 1)/k3 for every integer k ≥ 2 and our next

result shows that this is indeed the case.
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Figure 28. Ωind(C4) is contained in the shaded area above.

Theorem 8.1.18. If x ∈ [1/2, 1], then

I(C4, x) ≤ 3x(1− x)2 .

Moreover, the bound is tight for all x ∈ {(k − 1)/k : k ∈ N and k ≥ 2}.



483

8.1.2 Proofs of general results

We prove Theorem 8.1.2 and Proposition 8.1.4 in this section. The following result can be

proved using a similar argument as Proposition 1.3 in [167].

Proposition 8.1.19. For every quantum graph Q the set Ωind(Q) is closed.

Therefore the definitions of i(Q, x) and I(Q, x) rewrite as

i(Q, x) = min {y : (x, y) ∈ Ωind(Q)} and I(Q, x) = max {y : (x, y) ∈ Ωind(Q)} .

Next we show that Ωind(Q) is determined by i(Q, x) and I(Q, x).

Proposition 8.1.20. Let Q be a quantum graph, x ∈ [0, 1] and y1 < y2. If (x, y1) ∈ Ωind(Q)

and (x, y2) ∈ Ωind(Q), then (x, y) ∈ Ωind(Q) holds for all y ∈ [y1, y2].

Proof. Fix y ∈ [y1, y2]. Let (G′n)∞n=1 be a Q-good sequence of graphs that realizes (x, y1), and

let (G′′n)∞n=1 be a Q-good sequence of graphs that realizes (x, y2). Without loss of generality we

may assume that V (G′n) = V (G′′n) = [n] for n ≥ 1. We shall construct a sequence of graphs

(Gn)∞n=1 with V (Gn) = [n] for every n ≥ 1 that realizes (x, y).

For fixed n ≥ 1 we consider a finite sequence of graphs G1
n, . . . , G

m(n)
n with common vertex

set [n] which interpolates between G1
n = G′n and Gm(n) = G′′n in the sense that

• for 1 ≤ m < m(n) the graph Gm+1
n arises from Gmn by adding or deleting a single edge,

• and min{ρ(G′n), ρ(G′′n)} ≤ ρ(Gmn ) ≤ max{ρ(G′n), ρ(G′′n)} for every m ∈ [m(n)].
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Due to the first bullet we have ρ(Q,Gm+1
n ) = ρ(Q,Gmn ) + o(1) for every m ∈ [m(n) − 1].

Combined with ρ(Q,G1
n) = y1 + o(1) and ρ(Q,G

m(n)
n ) = y2 + o(1) this proves that there exists

some k(n) ∈ [m(n)] such that the graph Gn = G
k(n)
n satisfies ρ(Q,Gn) = y + o(1). Owing to

the second bullet we also have ρ(Gn) = x+ o(1).

Towards the continuity of I(Q, x) we now establish the following lemma.

Lemma 8.1.21. For every quantum graph Q there exist constants ` ≥ 1 and C ≥ 0 such that

for all x, x′ with 0 < x ≤ x′ ≤ 1 we have

I(Q, x′)

(x′)`
≤ I(Q, x)

x`
+ C ·

((
1

x

)`
−
(

1

x′

)`)
. (8.4)

Proof. Fix 0 < x ≤ x′ ≤ 1, set α = (x′/x)1/2−1, and consider a Q-good sequence (G′n)∞n=1 that

realizes (x′, I(Q, x′)). Without loss of generality we may assume v(G′n) = n for every n ≥ 1.

Let Gn be the graph which is the union of G′n and a set of bαnc isolated vertices. Since

ρ (Gn) =
ρ (G′n)

(
n
2

)(
n+bαnc

2

) → x′

(1 + α)2
= x as n→∞ ,

we have

I(Q, x) ≥ lim sup
n→∞

ρ(Q,Gn) . (8.5)
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To estimate the right side we write Q =
∑

i∈P λiFi +
∑

j∈N λjFj with λi > 0 for i ∈ P and

λj < 0 for j ∈ N . Set `i = v(Fi) for every i ∈ P ∪N and ` = max{`i/2: i ∈ P ∪N}. For every

i ∈ P the fact that G′n is a subgraph of Gn yields

ρ (Fi, Gn) ≥
ρ (Fi, G

′
n)
(
n
`i

)(n+bαnc
`i

) ≥ ρ (Fi, G
′
n)

(1 + α)`i
=
ρ (Fi, G

′
n)

(x′/x)`i/2
≥ ρ (Fi, G

′
n)

(x′/x)`
. (8.6)

For j ∈ N we use that every induced copy of Fj in Gn is either already contained in G′n or

involves one of the new isolated vertices, which implies

ρ (Fj , Gn) ≤
ρ (Fj , G

′
n)
(
n
`j

)
+ αn ·

(n+bαnc
`j−1

)(n+bαnc
`j

) ≤ ρ(Fj , G
′
n) +

`j · α
1 + α

+ on(1) .

Taking into account that

ρ(Fj , G
′
n) ≤ ρ (Fj , G

′
n)

(x′/x)`
+

(
1−

( x
x′

)`)

and

α

1 + α
= 1−

( x
x′

)1/2
≤ 1−

( x
x′

)`
we obtain

ρ (Fj , Gn) ≤ ρ(Fj , G
′
n)

(x′/x)`
+ (`j + 1)

(
1−

( x
x′

)`)
+ on(1) .
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Combined with Equation 8.6 this entails

ρ (Q,Gn) =
∑
i∈P

λiρ (Fi, Gn) +
∑
j∈N

λjρ (Fj , Gn)

≥
∑
i∈P

λi
ρ (Fi, G

′
n)

(x′/x)`
+
∑
j∈N

λj

(
ρ (Fj , G

′
n)

(x′/x)`
+ (`j + 1)

(
1−

( x
x′

)`))
− on(1)

≥ ρ(Q,G′n)

(x′/x)`/2
− C ·

(
1−

( x
x′

)`)
− on(1) ,

where C =
∑

j∈N (−λj)(`j + 1) ≥ 0. Now Equation 8.5 reveals

I(Q, x) ≥ I(Q, x′)

(x′/x)`
− C ·

(
1−

( x
x′

)`)

and upon multiplying both sides by x−` the claim follows.

For later use we record the following consequence.

Corollary 8.1.22. Given a quantum graph Q and x′ ∈ [0, 1], ε > 0, there exists some δ > 0

such that I(Q, x) > I(Q, x′)− ε holds for all x ∈ [0, x′) with |x− x′| < δ.

Now we are ready to prove the main result of Subsection 8.1.1.2.

Proof of Theorem 8.1.2. Given a quantum graph Q the formula

Ωind(Q) =
{

(x, y) ∈ [0, 1]× R : i(Q,F ) ≤ y ≤ I(Q,F )
}

follows immediately from Proposition 8.1.20. Now, due to Fact 8.1.3 (a) it suffices to show

that I(Q, x) is continuous and almost everywhere differentiable.
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Let ` ≥ 1, C ≥ 0 be the constants provided by Lemma 8.1.21. Owing to Equation 8.4 the

function F : (0, 1] −→ R defined by F (x) = (I(Q, x) + C) /x` is decreasing. It follows that F is

almost everywhere differentiable and that for every x ∈ (0, 1] the left-sided limit limx→x−0
F (x)

exists. Consequently, the function I(Q, x) has the same properties.

Let us show next that I(Q, x) is left-continuous. Given an arbitrary x0 ∈ (0, 1] we already

know that the limit y0 = limx→x−0
I(Q, x) exists. Proposition 8.1.19 yields (x0, y0) ∈ Ωind(Q),

whence I(Q, x0) ≥ y0. But I(Q, x0) > y0 would contradict Corollary 8.1.22 and thus we have

indeed I(Q, x0) = y0. By Fact 8.1.3 (b) the function I(Q, x) = I(Q, 1 − x) is right-continuous

as well. This concludes the proof.

Proof of Proposition 8.1.4. For every n ∈ N and x ∈ [0, 1] we let H ′(n, x) denote the n-vertex

graph consisting of a clique of order bx1/2nc and n − bx1/2nc isolated vertices. Moreover, we

set H ′′(n, x) = H ′(n, 1− x). Notice that limn→∞ ρ(H ′(n, x)) = limn→∞ ρ(H ′′(n, x)) = x holds

for every x ∈ [0, 1].

Now suppose that F is a graph which is neither complete nor empty. If F has no isolated

vertex, then ρ(F,H ′(n, x)) = 0 holds for all n ∈ N and x ∈ [0, 1], which leads to i(F, x) = 0. If

F has an isolated vertex we get the same conclusion from ρ(F,H ′′(n, x)) = 0.

8.1.3 Proof for complete multipartite graphs

We prove Theorem 8.1.11 in this section. The following result of Schelp and Thomason [225]

will be useful in our argument.
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Theorem 8.1.23 (Schelp–Thomason [225]). Let Q =
∑

i∈[m] λiFi be a quantum graph whose

constituents are complete multipartite graphs and let n ∈ N. If every Fi with λi < 0 is complete,

then among all n-vertex graphs G maximizing ρ(Q,G) there is a complete multipartite one.

Definition 8.1.24. Suppose that H : [0, 1] → R is a concave function and L : [0, 1] → R is

a linear function. We say L is a tangent line of H at x0 ∈ [0, 1] if L(x) ≥ H(x) holds for

x ∈ [0, 1] with equality for x = x0.

It is easy to see that for every concave function F : [0, 1] → R and every x0 ∈ (0, 1) there

always exists a (not necessarily unique) tangent line of F at x0.

Proof of Theorem 8.1.11. By Fact 8.1.3 (a) it suffices to show part (b). Let Q =
∑

i∈[m] λiFi be

a quantum graph whose constituents are complete multipartite graphs such that every Fi with

and λi < 0 is complete. For brevity we set H(x) = cap (M(Q, x)) for every x ∈ [0, 1]. Clearly

H(0) = M(Q, 0) = lim
n→∞

ρ(Q,Kn) = I(Q, 0)

and a similar argument shows H(1) = I(Q, 1). So it remains to prove H(x0) ≥ I(Q, x0) for

every x0 ∈ (0, 1). To this end we choose a tangent line L(x) = kx+ p of H at x0, so that

H(x) ≤ kx+ p for all x ∈ [0, 1] and H(x0) = kx0 + p . (8.7)
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Now let (Gn)∞n=1 be a sequence of graphs that realizes (x0, I(Q, x0)). By Theorem 8.1.23

applied to the quantum graph Q? = Q−kK2 there exists for every n ≥ 1 a multipartite n-vertex

graph G′n such that v(G′n) = v(Gn) and

ρ(Q,Gn)− kρ(Gn) = ρ(Q?, Gn) ≤ ρ(Q?, G′n) = ρ(Q,G′n)− kρ(G′n) . (8.8)

By passing to a subsequence of (G′n)∞n=1 we may assume that the limits x1 = limn→∞ ρ(G′n)

and y1 = limn→∞ ρ(Q,G′n) exist. Due to the definition of M(Q, x1) and Equation 8.7 we have

y1 ≤M(Q, x1) ≤ H(x1) ≤ kx1 + p

and taking the limit n→∞ in Equation 8.8 it follows that

I(Q, x0)− kx0 ≤ y1 − kx1 ≤ p .

Together with Equation 8.7 this leads to the desired estimate I(Q, x0) ≤ kx0 + p = H(x0).

8.1.4 Proofs for almost complete graphs

In this section we prove Theorems 8.1.12 and 8.1.13 as well as Proposition 8.1.14.
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8.1.4.1 Cherries

We begin with the proof of Theorem 8.1.12. Consider a graph G = (V,E) with |V | = n

vertices. Counting the number of pairs ({x, y}, z) ∈ E × V with z 6= x, y in two different ways,

we obtain

(n− 2)|E| = N(K−3 , G) + 2N(K−3 , G) + 3N(K3, G) .

Dividing by 2
(
n
3

)
and rearranging we deduce

ρ(K−3 , G) =
3

2

(
ρ(K2, G)− ρ(K3, G)

)
− 1

2
ρ(K−3 , G) .

Therefore the clique density theorem yields for every x ∈ [0, 1] the upper bound I(K−3 , x) ≤

3
2(x− g3(x)). Moreover, for every x ∈ [0, 1] the sequence of multipartite graphs (H?(n, x))∞n=1

is K−3 -free and establishes the lower bound I(K−3 , x) ≥ 3
2(x− g3(x)).

8.1.4.2 Piecewise linear upper bounds

Roughly speaking we show in this subsection that a concave piecewise linear function is an

upper bound on I(K−t , x) if it respects the constraints coming from Turán graphs.

Lemma 8.1.25. Suppose that an integer s ≥ 1 and real numbers λ, µ have the property that

1

rs+1

(
r − 1

s

)
≤ λr − 1

2r
+ µ (8.9)
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holds for every positive integer r. If m ≥ 1 and (α1, . . . , αm) ∈ ∆m−1, then

m∑
i=1

∑
W∈([m]\{i}

s )

α2
i

∏
j∈W

αj ≤ λ
∑

{i,j}∈([m]
2 )

αiαj + µ .

Proof. Assume for the sake of contradiction that this fails and let m denote the least positive

integer for which there exists a counterexample. Appealing to a theorem of Weierstraß, we pick

a point (α?1, . . . , α
?
m) ∈ ∆m−1 such that the difference

Φ =
m∑
i=1

∑
W∈([m]\{i}

s )

(α?i )
2
∏
j∈W

α?j − λ
∑

{i,j}∈([m]
2 )

α?iα
?
j

is maximal. Due to our indirect assumption we know Φ > µ. The case r = m of Equation 8.9

reveals that α?1 = · · · = α?m = 1/m is false. Therefore, we have m ≥ 2 and and for reasons of

symmetry we may assume that α?1 < α?2.

Given two real numbers α1, α2 ≥ 0 satisfying

α1 + α2 = α?1 + α?2

we write Φ(α1, α2) for the result of replacing α?1, α?2 in the above formula for Φ by α1, α2.

So Φ(α?1, α
?
2) = Φ and there are constants c1, . . . , c5 depending only on α?3, . . . , α

?
m, and λ such

that

Φ(α1, α2) = c1 + c2(α1 + α2) + c3(α2
1 + α2

2) + c4α1α2 + c5(α1 + α2)α1α2 .



492

Since α1 +α2 is constant and α2
1 +α2

2, 2α1α2 add up to the constant (α?1 +α?2)2, it follows that

there are constants c6, c7 such that

Φ(α1, α2) = c6α1α2 + c7 .

If c6 6= 0 we can find a real number ξ 6= 0 such that |ξ| is very small and Φ(α?1 + ξ, α?2 − ξ) > Φ

contradicts the maximality of Φ. So c6 = 0 and Φ(α1, α2) = c7 = Φ is constant. But now

Φ(α?1 + α?2, 0) = Φ contradicts the minimality of m. This completes the proof.

Lemma 8.1.26. Suppose that t ≥ 3 and that f : [0, 1] −→ R is a piecewise linear concave

function. If for every positive integer r we have

f(1− 1/r) ≥
(
t

2

)
(r − 1) · · · (r − (t− 2))

rt−1
, (8.10)

then I(K−t , x) ≤ f(x) holds for every x ∈ [0, 1].

Proof. Since f is the pointwise minimum of a family of linear functions, it suffices to deal

with the case that f(x) = λx + µ is itself linear. By Theorem 8.1.11 (b) it is enough to show

M(K−t , x) ≤ λx+µ for every x ∈ [0, 1]. We shall establish the more precise estimate that every

complete multipartite graph G on n vertices satisfies

N(K−t , G) ≤ (2λ|E(G)|+ µn2)nt−2/t! . (8.11)
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Let a1, . . . , am be the sizes of the vertex classes of G and set αi = ai/n for every i ∈ [m].

Now
∑m

i=1 αi = 1 and

N(K−t , G) =

m∑
i=1

(
ai
2

) ∑
W∈([m]\{i}

t−2 )

∏
j∈W

aj ≤
nt

2

m∑
i=1

α2
i

∑
W∈([m]\{i}

t−2 )

∏
j∈W

αj

and, therefore, instead of Equation 8.11 it suffices to show

m∑
i=1

α2
i

∑
W∈([m]\{i}

t−2 )

∏
j∈W

αj ≤
4λ

t!

∑
{i,j}∈([m]

2 )

αiαj +
2µ

t!
.

By Lemma 8.1.25 applied to t − 2, 4λ/t!, 2µ/t! here in place of s, λ, µ there this inequality

follows from the fact that

1

rt−1

(
r − 1

t− 2

)
≤ 4λ

t!
· r − 1

2r
+

2µ

t!
=

2f(1− 1/r)

t!

holds for every r ≥ 1, which is in turn equivalent to the hypothesis Equation 8.10.

8.1.4.3 Precise calculations

Fix an integer t ≥ 4. Our next goal is to show that the function ht introduced in Theo-

rem 8.1.13 satisfies the assumptions of Lemma 8.1.26. To this end we set Ar =
(
t
2

) (r−2)t−3

rt−2 for

every integer r ≥ 2.

Lemma 8.1.27. Let t ≥ 4 and r ≥ t− 1 be integers.

(a) If r ≤ (3t2 − 5t− 4)/6, then Ar−1 < Ar.
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(b) If r = (3t2 − 5t− 2)/6, then Ar−1 < Ar or Ar−1 > Ar holds depending on whether t ≤ 20

or t > 20.

(c) If r ≥ (3t2 − 5t)/6, then Ar−1 > Ar .

In particular, there exists a unique integer k ≥ t − 2 satisfying Ak = max{Ar : r ≥ t − 2},

namely k = k(t).

Proof. One confirms easily that

Ar−1 < Ar ⇐⇒ 1− t− 1

r
<
(

1− 1

r

)t−2(
1− 2

r

)
.

Due to the approximations

3∑
i=0

(−1)i

ri

(
t− 2

i

)
≤
(

1− 1

r

)t−2

≤
4∑
i=0

(−1)i

ri

(
t− 2

i

)

we obtain the implications

(t+ 2)(t− 2)(t− 3)

6
< r

(
(t+ 1)(t− 2)

2
− r
)

=⇒ Ar−1 < Ar

and

(t+ 2)(t− 2)(t− 3)

6
> r

(
(t+ 1)(t− 2)

2
− r
)

+
t+ 3

4r

(
t− 2

3

)
=⇒ Ar−1 > Ar

(see also the proof of Lemma 8.1.29).
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So for the proof of part (a) it suffices to observe that (t−1)/3 ≤ r ≤ (3t2−5t−4)/6 implies

r

(
(t+ 1)(t− 2)

2
− r
)
≥ 3t2 − 5t− 4

6
· t− 1

3
≥ t(t− 1)(t− 2)

6
>

(t+ 2)(t− 2)(t− 3)

6
.

Similarly, if r ≥ (3t2 − 5t)/6 > (t− 2)(t+ 3)/6 we have

r

(
(t+ 1)(t− 2)

2
− r
)

+
t+ 3

4r

(
t− 2

3

)
<

3t2 − 5t

6
· t− 3

3
+

(t− 3)(t− 4)

4

<
(t+ 2)(t− 2)(t− 3)

6
,

which proves part (c).

We proceed with the case r = (3t2 − 5t − 2)/6, which requires t ≡ 2 (mod 3). Direct

calculations show Ar−1 < Ar for t ∈ {5, 8, 11, 14, 17, 20} and Ar−1 > Ar for t = 23. As soon as

t ≥ 26 we have 8(t− 8)r > 3(t+ 3)(t− 3)(t− 4) and hence

r

(
(t+ 1)(t− 2)

2
− r
)

+
t+ 3

4r

(
t− 2

3

)
<

3t2 − 5t− 2

6
· t− 2

3
+

(t− 2)(t− 8)

9

=
(t+ 2)(t− 2)(t− 3)

6
,

which concludes the discussion of (b). Finally, (a) – (c) together imply

At−2 < At−1 < · · · < Ak(t) and Ak(t) > Ak(t)+1 > . . . ,

whence Ak(t) = max{Ar : r ≥ t− 2}.
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Lemma 8.1.28. We have I(K−t , x) ≤ ht(x) for every x ∈ [0, 1].

Proof. For later use we observe that the number k = k(t) satisfies

k ≥ t(t− 2)

2
. (8.12)

Indeed, if t 6= 5, 8, 11, 14, 17, 20, then k − t(t − 2)/2 = d(t − 8)/6e ≥ d−2/3e = 0 and in the

remaining cases we have k − t(t− 2)/2 = (t− 2)/6 ≥ 0.

Next we show

ht(1− 1/r) ≥
(
t

2

)
(r − 1) · · · (r − (t− 2))

rt−1

for every positive integer r. The cases r ≤ t − 2 and r ≥ k are clear. Now suppose that

t− 1 ≤ r < k. Since 1− 1/r ≤ 1− 1/k and ht(x) = Ak · x for all x ∈ [0, 1− 1/k] we have

ht(1− 1/r) = Ak · (1− 1/r) ≥ Ar · (1− 1/r) =

(
t

2

)
(r − 1) · · · (r − (t− 2))

rt−1
,

as desired.

According to Lemma 8.1.26 it only remains to show that ht is concave. Now Ak > Ak+1

rewrites as

ht(1− 1/k)

1− 1/k
>
ht(1− 1/(k + 1))

1− 1/(k + 1)
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and, therefore, ht is concave in some sufficiently small neighbourhood around x = 1 − 1/k.

Define F :
[
0, 1

k

]
−→ R by F (x) = x

∏t−2
i=1(1 − ix). Since ht(1 − 1/r) =

(
t
2

)
F (1/r) holds for

every r ≥ k, it suffices to show that F is concave. If x ∈ [0, 1/k], then

t−2∑
i=1

i

1− ix
≤ 1 + · · ·+ (t− 2)

1− (t− 2)x

Equation 8.12
≤ (t− 2)(t− 1)

2(1− 2/t)
=

(t− 1)t

2
<

2

x

and thus

F ′′(x)

F (x)
=

∑
1≤i<j≤t−2

ij

(1− ix)(1− jx)
− 1

x

t−2∑
i=1

i

1− ix
<

1

2

( t−2∑
i=1

i

1− ix

)2
− 1

x

t−2∑
i=1

i

1− ix
≤ 0 ,

which proves that F is indeed concave.

The only part of Theorem 8.1.13 still lacking verification is Equation 8.1. Setting Br =(
t
2

) (r−1)t−2

rt−1 for every r ≥ t−2 and f = d(t−2)(3t+1)/6e we are to showBf = max{Br : r ≥ t−2}.

It turns out that this holds in the following slightly stronger form.

Lemma 8.1.29. We have 0 = Bt−2 < Bt−1 < · · · < Bf and Bf > Bf+1 > . . . .

Proof. First we show Br−1 < Br for every integer r ∈ [t− 1, f ]. The fact that (t− 2)(3t+ 1) is

even yields f ≤ (t− 2)(3t+ 1)/6 + 2/3 = (t− 1)(3t− 2)/6, whence

t− 1

3
≤ r ≤

(
t

2

)
− t− 1

3
.
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For this reason we have

r

((
t

2

)
− r
)
≥ t− 1

3

((
t

2

)
− t− 1

3

)
>

(
t

3

)
,

which rewrites as

1− t− 1

r
< 1− t

r
+

(
t

2

)
1

r2
−
(
t

3

)
1

r3
.

As the right side is at most (1− 1/r)t, this proves

1 <
(r − 1)t

rt−1(r − (t− 1))
=

Br
Br−1

,

as desired.

Next we show Br−1 > Br for every r ≥ f + 1. Due to r ≥ (3t2 − 5t+ 4)/6 > 1
2

(
t
2

)
we have

r

((
t

2

)
− r
)
<

3t2 − 5t+ 4

6
· t− 2

3
=

(
t

3

)
− (t− 2)2

9
.

Moreover, r ≥ t(t− 2)/2 implies

(
t

4

)
· 1

r
<

(t− 1)(t− 3)

12
<

(t− 2)2

9
.

Adding the previous two estimates we obtain

r

((
t

2

)
− r
)

+

(
t

4

)
· 1

r
<

(
t

3

)
,
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which rewrites as

1− t− 1

r
> 1− t

r
+

(
t

2

)
1

r2
−
(
t

3

)
1

r3
+

(
t

4

)
1

r4
.

As the right side is an upper bound on (1− 1/r)t we can conclude

1 >
(r − 1)t

rt−1(r − (t− 1))
=

Br
Br−1

.

8.1.4.4 More on K−4

Our last result on Ωind(K−4 ), Proposition 8.1.14, is an immediate consequence of the follow-

ing result.

Lemma 8.1.30. Every graph G satisfies N(K−4 , G) ≤ 1
2

(|E(G)|
2

)
.

Proof. Notice that an abstract K−4 has two perfect matchings. Now with every induced copy of

K−4 in G we associate its two perfect matchings, viewed as members of
(
E(G)

2

)
. We are thereby

considering 2N(K−4 , G) pairs of edges of G. Since every pair {e, f} ∈
(
E(G)

2

)
can be associated

to at most one copy of K−4 in G (namely the copy induced by e∪ f , if it exists), this proves the

claim.

8.1.5 Proofs for stars

In this section we prove Theorem 8.1.15. Recall from Section 8.1.1.5 that for every integer

t ≥ 3 and every real x ∈ [0, 1/2] we defined

st(x) =
t+ 1

2t
x
((

1−
√

1− 2x
)t−1

+
(
1 +
√

1− 2x
)t−1

)
.
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We commence by showing that there is a unique x?(t) ∈ [0, 1/2], where the function st

attains its maximum. For t = 3 we have s3(x) = 2x(1 − x) and, hence, x?(3) = 1/2 is as

desired. The case t ≥ 4 is addressed by the next lemma.

Lemma 8.1.31. For t ≥ 4 there exists a unique real x?(t) ∈
(

2t
(t+1)2

, 2
t+1

)
such that the func-

tion st is strictly increasing on [0, x?(t)] and strictly decreasing on [x?(t), 1/2].

Proof. Define the auxiliary function h : [0, 1] −→ R by h(y) = 1 − ty + tyt−1 − yt. Due to

h′′(y) = t(t− 1)yt−3(t− 2− y) > 0 for y ∈ (0, 1] this function is strictly convex. Together with

h(0) = 1, h(1) = 0, and h′(1) = t(t − 3) > 0 this shows that there exists a unique y? = (0, 1)

such that h(y?) = 0, h(y) > 0 for y ∈ [0, y?), and h(y) < 0 for y ∈ (y?, 1).

Due to

d

dy

y + yt

(1 + y)t+1
=

h(y)

(1 + y)t+2

it follows that y+yt

(1+y)t+1 is strictly increasing on [0, y?) and strictly decreasing on (y?, 1]. As 2y
(1+y)2

is strictly increasing on [0, 1] and

st

(
2y

(1 + y)2

)
=

(t+ 1)(y + yt)

(1 + y)t+1
,

it follows that st has the desired monotonicity properties for x?(t) = 2y?

(1+y?)2
.

Next, due to h(1/t) = t2−t − t−t > 0 we have y? > 1
t and, consequently, x?(t) > 2t

(t+1)2
.

Similarly,

h

(
1

t− 1

)
< − 1

t− 1
+

t

(t− 1)t−1
≤ t− (t− 1)2

(t− 1)3
< 0
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yields y? < 1
t−1 , whence

x?(t) <
2(t− 1)

t2
<

2

t+ 1
.

Lemma 8.1.32. For every integer t ≥ 3 the function st is increasing and concave on [0, x?(t)].

Proof. Our choice of x?(t) guarantees that st is indeed increasing. So it suffices to show that

st is concave on the interval It =
[
0, 2

t+1

]
. Since

st(x) =
t+ 1

2t−1

∑
0≤n≤(t−1)/2

(
t− 1

2n

)
x(1− 2x)n

it suffices to show for every positive integer n ≤ (t−1)/2 that x(1−2x)n is concave on It. This

follows immediately from

d2

dx2
x(1− 2x)n = 4n(1− 2x)n−2[(n+ 1)x− 1] .

Our next step is to show M(St, x) = I2(St, x) = st(x) for x ∈ [0, x?(t)]. To this end we use

the following result due to Brown and Sidorenko, which is implicit in the proof of Proposition

2 in [31].

Proposition 8.1.33 (Brown–Sidorenko [31]). Let r, s, t, n be positive integers with r ≥ 3. For

every complete r-partite graph G on n vertices there exists a complete (r − 1)-partite graph G′

on the same vertex set such that e(G′) ≤ e(G) and N(Ks,t, G
′) ≥ N(Ks,t, G).
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The proof proceeds by “merging” two smallest vertex classes of G, i.e., if V1, . . . , Vr with

|V1| ≤ · · · ≤ |Vr| are the vertex classes of G, then one constructs G′ so as to have the vertex

classes V1 ∪ V2, V3, . . . , Vr. Clearly, r − 2 iterations of this process lead to a complete bipartite

graph G′′ such that V (G′′) = V (G), e(G′′) ≤ e(G), and N(Ks,t, G
′) ≥ N(Ks,t, G). This shows

that for the determination of the inducibility of Ks,t only complete bipartite host graphs are

relevant. This establishes the following result on stars.

Theorem 8.1.34 (Brown–Sidorenko [31]). For every integer t ≥ 2 the inducibility of St is

given by ind(St) = I2(St, x
?(t)).

We proceed with another simple consequence of Proposition 8.1.33.

Lemma 8.1.35. If r, t ≥ 2 are integers and x ∈ [0, x?(t)], then I2(St, x) ≥ Ir(St, x).

Proof. Let y2 = I2(St, x), yr = Ir(St, x) and consider an St-good sequence of complete r-partite

graphs (Gn)∞n=1 that realizes (x, yr). In view of Proposition 8.1.33 there exists a sequence

(G′n)∞n=1 of complete bipartite graphs such that

V (G′n) = V (Gn), e(G′n) ≤ e(Gn), and N(Ks,t, G
′
n) ≥ N(Ks,t, Gn) (8.13)

hold for every positive integer n. By passing to a subsequence we may assume that the limits

x′ = limn→∞ ρ(G′n) and y′2 = limn→∞ ρ(St, G
′
n) exist. Now Equation 8.13 implies

x′ ≤ x and y′2 ≥ yr , (8.14)
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and as (G′n)∞n=1 is an St-good sequence of complete bipartite graphs that realizes (x′, y′2) we

have y′2 ≤ I2(St, x
′). Since I2(St, ·) = st(·) is increasing on [0, x?(t)], the first estimate in Equa-

tion 8.14 entails I2(St, x
′) ≤ I2(St, x). So altogether we obtain

yr ≤ y′2 ≤ I2(St, x
′) ≤ I2(St, x) ,

which concludes the proof.

Now we are ready to prove Theorem 8.1.15.

Proof of Theorem 8.1.15. The case t = 2 already being understood in Theorem 8.1.12 we may

assume that t ≥ 3. It is clear that I(St, x) ≥ I2(St, x) = st(x) holds for x ∈ [0, 1/2] and thus

we just need to show I(St, x) ≤ st(x) for x ∈ [0, x?(t)]. Define f : [0, 1] −→ R by

f(x) =


st(x) for x ∈ [0, x?(t)]

st (x?(t)) for x ∈ [x?(t), 1].

Lemma 8.1.32 informs us that f is concave. Moreover, we have f(x) ≥ M(St, x) for all

x ∈ [0, 1]. Indeed, if x ∈ [0, x?(t)] this follows from Lemma 8.1.35 and for x ∈ [x?(t), 1] we can

appeal to Theorem 8.1.34 instead. Summarizing, f(x) is a concave upper bound on M(St, x).

Owing to Theorem 8.1.11 this proves I(St, x) ≤ f(x) = st(x) for every x ∈ [0, x?(t)].
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8.1.6 Proofs for complete bipartite graphs

In this section we prove Theorems 8.1.16 and 8.1.18. The upper bound on I(Ks,t, x) stated

in Theorem 8.1.16 is an immediate consequence of the following result.

Proposition 8.1.36. If t ≥ s ≥ 2 are positive integers, then for every graph G we have

N(Ks,t, G) ≤ (t− s+ 1)!

s!t!
N(St−s+1, G) · (e(G))s−1 .

Proof. Notice that for an abstract Ks,t the number of ordered partitions V (Ks,t) = U1∪· · ·∪Us

such that U1 induces a star St−s+1 and each of U2, . . . , Us induces an edge is
(

t
t−s+1

)
(s− 1)!s!.

This is because there are s
(

t
t−s+1

)
possibilities for U1; moreover, if i ∈ [2, s] and U1, . . . , Ui−1

are already fixed, then there are (s− i+ 1)2 possibilities for Ui.

By double counting it follows that
(

t
t−s+1

)
(s − 1)!s!N(Ks,t, G) is at most the number of

s-tuples (U1, . . . , Us) of subsets of G such that G[U1] ∼= St−s+1 and G[Ui] ∼= K2 for all i ∈ [2, s],

whence (
t

t− s+ 1

)
(s− 1)!s!N(Ks,t, G) ≤ N(St−s+1, G) · (e(G))s−1 .

Now it remains to observe
(

t
t−s+1

)
(s− 1)!s! = s!t!

(t−s+1)! .

We remark that this argument is asymptotically optimal if G is a complete bipartite graph.

More precisely, for x ≤ x?(t− s+ 1) the sequence (B(n, x))∞n=1 establishes the equality case in

Theorem 8.1.16. This observation concludes the proof of Theorem 8.1.16.

In the remainder of this section we show the following explicit version of Theorem 8.1.18.
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Theorem 8.1.37. Every graph G on n vertices with xn2/2 edges satisfies

N(C4, G) ≤ x(1− x)2

8
n4 + 2n3 .

For the proof we need the following well-known result due to Goodman [115], whose short

proof we include for the sake of completeness.

Proposition 8.1.38 (Goodman [115]). For every real number x ∈ [0, 1], every positive inte-

ger n, and every graph G on n vertices with xn2/2 edges we have

∑
v∈V (G)

e(v) ≥
∑

v∈V (G)

d(v)2 − xn3/2 ,

where e(v) = e(G[N(v)]) denotes the number of triangles containing the vertex v.

Proof. Counting the number of pairs (u, {v, w}) ∈ V (G) × E(G) with v, w ∈ N(u) in two

different ways, we obtain

∑
u∈V (G)

e(u) ≥
∑
vw∈G

(
d(v) + d(w)− n

)
=

∑
v∈V (G)

d(v)2 − e(G) · n .

Goodman’s formula has the following consequence, which will assist us in the inductive

proof of Theorem 8.1.37.
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Corollary 8.1.39. Every graph G with n vertices and xn2/2 edges possesses a vertex v satis-

fying

e(v) ≥ d(v)2

2
+

(1− 4x+ 3x2)n2

4
− (1− x)3n3

4(n− d(v))
.

Proof. The Cauchy–Schwarz inequality implies
∑

v∈V (G) d(v)2 ≥ x2n3 and because of

∑
v∈V (G)

(n− d(v)) = (1− x)n2

we also have ∑
v∈V (G)

1

n− d(v)
≥ 1

1− x
.

Consequently,

∑
v∈V (G)

(d(v)2

2
+

(1− 4x+ 3x2)n2

4
− (1− x)3n3

4(n− d(x))

)
≤

∑
v∈V (G)

d(v)2

2
+

(x2 − x)n3

2

≤
∑

v∈V (G)

d(v)2 − xn3/2 .

Due to Proposition 8.1.38 the result now follows by averaging.

Proof of Theorem 8.1.37. We argue by induction on n. The base case n ≤ 3 is clear, for there

are no 4-cycles in graphs with less than four vertices. Now suppose n ≥ 4 and that our claim

holds for every graph on n− 1 vertices.
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Given a graph G on n vertices with xn2/2 edges we invoke Corollary 8.1.39 and get a vertex

v ∈ V (G) such that

e ≥ d2

2
+

(1− 4x+ 3x2)n2

4
− (1− x)3n3

4(n− d)
, (8.15)

where d = d(v) and e = e(v). We contend that

N(C4, G) ≤ N(C4, G− v) + (d2/2− e)(n− d) , (8.16)

or, in other words, that there are at most (d2/2− e)(n− d) induced copies of K2,2 in G which

contain the vertex v. The reason for this is that each such copy contains a pair of non-adjacent

members of N(v) and a fourth vertex belonging to V (G) \ N(v). Clearly there are at most

d2/2− e possibilities for such a non-adjacent pair and at most n− d possibilities for the fourth

vertex.

Claim 8.1.40. We have

8N(C4, G− v) ≤ x(1− x)2(n4 − 4n3) + 2(xn− d)(1− 4x+ 3x2)n2 + 16n3 .

Proof. The induction hypothesis yields

8N(C4, G− v) ≤ x′(1− x′)2(n− 1)4 + 16(n− 1)3 , (8.17)
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where x′ is defined by

x′ =
2|E(G− v)|

(n− 1)2
=
xn2 − 2d

(n− 1)2
.

The function h(x) = x(1 − x)2 has derivatives h′(x) = 1 − 4x + 3x2 and h′′(x) = −4 + 6x.

Therefore we have ‖h′‖[0,1] = 1 and ‖h′′‖[0,1] = 4, where ‖ · ‖[0,1] denotes the supremum norm

with respect to the unit interval. So Taylor’s formula and Equation 8.17 imply

8N(C4, G− v) ≤ x(1− x)2(n− 1)4 + (1− 4x+ 3x2)(x′ − x)(n− 1)4

+ 2(x′ − x)2(n− 1)4 + 16(n− 1)3 .

Here

x(1− x)2(n− 1)4 ≤ x(1− x)2(n4 − 4n3 + 6n2) ≤ x(1− x)2(n4 − 4n3) + n2

and due to

x′ − x =
(2n− 1)x− 2d

(n− 1)2
(8.18)

we have 2(x′− x)2(n− 1)4 = 2
∣∣(2n− 1)x− 2d

∣∣2 ≤ 8n2. For these reasons it suffices to establish

(1− 4x+ 3x2)(x′ − x)(n− 1)4 ≤ 2(xn− d)(1− 4x+ 3x2)n2 + 7n2 . (8.19)
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Now the triangle inequality yields

∣∣(x′ − x)(n− 1)4 − 2(xn− d)n2
∣∣

≤
∣∣(x′ − x)(n− 1)2 − 2(xn− d)

∣∣(n− 1)2 + 2|xn− d|
(
n2 − (n− 1)2

)
Equation 8.18
≤ x(n− 1)2 + 4n2 ≤ 5n2

and together with ‖h′‖[0,1] = 1 this proves Equation 8.19. Thereby Claim 8.1.40 is proved.

Now combining Equation 8.15, Equation 8.16, and Claim 8.1.40 we obtain

8N(C4, G) ≤ x(1− x)2(n4 − 4n3) + 2(xn− d)(1− 4x+ 3x2)n2 + 16n3

− 2(1− 4x+ 3x2)n2(n− d) + 2(1− x)3n3

= x(1− x)2n4 + 16n3 ,

as desired.

8.1.7 Concluding remarks

8.1.7.1 General questions

As the example Q = K3 +K3 shows, for a quantum graph Q the function I(Q, x) can have

at least two global maxima. We do not know whether this is possible for single graphs F as

well.
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Problem 8.1.41. Does there exist a graph F such that the function I(F, x) has at least two

global maxima?

Two questions of a similar flavor are as follows.

Problem 8.1.42. Does there exist a graph F such that for some nontrivial interval J we have

I(F, x) = ind(F ) for all x ∈ J?

Problem 8.1.43. Does there exist a graph F such that the function I(F, x) has a nontrivial

local maximum (minimum)?

Recall that for a self-complementary graph F the function I(F, x) is symmetric around

x = 1/2. One may thus wonder whether some appropriate self-complementary graph F yields

an affirmative solution to Problem 8.1.41. This approach leads to the following question.

Problem 8.1.44. Let F be a self-complementary graph. Is it true that I(F, x) = ind(F ) holds

if and only if x = 1/2?

8.1.7.2 Problems for specific graphs

The smallest problem left open by our results on stars in Section 8.1.5 is to determine

I(S3, x) for x ∈ [1/2, 1]. In an interesting contrast to the case S2 = K−3 one can show that

the clique density construction (see Construction 8.1.9) is not extremal for this problem. For

x ∈ [4
√

2 − 5, 1] the best construction we are aware of is the complement of a clique of order

b(1− x)1/2nc, which leads to the bound

I(S3, x) ≥ 4(1− (1− x)1/2)(1− x)3/2 . (8.20)
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For x ∈ [0.91, 0.93] we have a complicated argument based on the results in [219] which shows

that equality holds in Equation 8.20. In the range x ∈ [1/2, 4
√

2 − 5) the complement of two

disjoint cliques of order b((1 − x)/2)1/2nc shows that I(S3, x) is strictly larger than the right

side of Equation 8.20. We hope to return to this problem in the near future.

Finally, we would like to emphasize Conjecture 8.1.17 again: Is it true that for x ∈ [1/2, 1]

the graphs in Construction 8.1.9 minimizing the triangle density maximize the induced C4

density?



CHAPTER 9

INDEPENDENT SETS IN SPARSE HYPERGRAPHS
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9.1 Independent set in hypergraphs that omit one intersection

9.1.1 Introduction

The seminal Turán Theorem [241] implies that α(G) ≥ n/(d + 1) for every graph G on

n vertices with average degree d. Spencer [234] extended Turán’s result to hypergraphs and

proved that for all k ≥ 3 every n-vertex k-graph H with average degree d satisfies

α(H) ≥ ck
n

d1/(k−1)
(9.1)

for some constant ck > 0.

The bound for α(H) can be improved if we forbid some family F of hypergraphs in H. For

` ≥ 2 a (Berge) cycle of length ` in H is a collection of ` edges E1, . . . , E` ∈ H such that

there exists ` distinct vertices v1, . . . , v` with vi ∈ Ei ∩Ei+1 for i ∈ [`− 1] and v` ∈ E` ∩E1. A

seminal result of Ajtai, Komlós, Pintz, Spencer, and Szemerédi [4] states that for every n-vertex

k-graph H with average degree d that contains no cycles of length 2, 3, and 4, there exists a

constant c′k > 0 such that

α(H) ≥ c′k
n

d1/(k−1)
(log d)1/(k−1). (9.2)

Moreover, this is tight apart from c′k.

Spencer [200] conjectured and Duke, Lefmann, and Rödl [53] proved that the same conclu-

sion holds even if H just contains no cycles of length 2. Their result was further extended by

Rödl and Šiňajová [222] to the larger family of (n, k, `)-systems defined in the following section.
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9.1.1.1 (n, k, `)-systems and (n, k, `)-omitting systems

Let k > ` ≥ 1. Recall that an n-vertex k-graph H is an (n, k, `)-system if the intersection

of every pair of edges in H has size less than `, and H is an (n, k, `)-omitting system if it

has no two edges whose intersection has size exactly `. It is clear from the definition that an

(n, k, `)-system is an (n, k, `)-omitting system, but not vice versa, since an (n, k, `)-omitting

system may have pairwise intersection sizes greater than `.

Define

f(n, k, `) = min {α(H) : H is an (n, k, `)-system} , and

g(n, k, `) = min {α(H) : H is an (n, k, `)-omitting system} .

The study of f(n, k, `) has a long history (e.g. [222; 150; 78; 239]) and, in particular, Rödl

and Šiňajová [222] proved that

f(n, k, `) = Θ
(
n
k−`
k−1 (log n)

1
k−1

)
for all fixed k > ` ≥ 2. (9.3)

It follows that

g(n, k, `) ≤ f(n, k, `) = O
(
n
k−`
k−1 (log n)

1
k−1

)
. (9.4)

One important difference between (n, k, `)-systems and (n, k, `)-omitting systems is their

maximum sizes. By definition, every set of ` vertices in an (n, k, `)-system is contained in at
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most one edge, thus every (n, k, `)-system has size at most
(
n
`

)
/
(
k
`

)
= O

(
n`
)
. However, this is

not true for (n, k, `)-omitting systems. Indeed, the following result of Frankl and Füredi [99]

shows that the maximum size of an (n, k, `)-omitting system can be much larger than that of

an (n, k, `)-system when k > 2`+ 1.

Let k > ` ≥ 1 and λ ≥ 1 be integers. Recall that the k-graph Skλ(`) consists of λ edges

E1, . . . , Eλ such that Ei ∩Ej = S for 1 ≤ i < j ≤ λ and some fixed set S (called the center) of

size `. When ` = 1 we just write Skλ, and we will omit the superscript k in Skλ(`) if it is obvious.

It is easy to see that an n-vertex k-graph is an (n, k, `)-omitting system iff it is S2(`)-free, and

is an (n, k, `)-system iff it is {S2(`), . . . , S2(k − 1)}-free.

Theorem 9.1.1 (Frankl–Füredi [99]). Let k > ` ≥ 1 and λ > 1 be fixed integers and H be an

Sλ(`)-free k-graph on n vertices. Then |H| = O
(
nmax{`,k−`−1}). Moreover, the bound is tight

up to a constant multiplicative factor.

Theorem 9.1.1 together with Equation 9.1 imply that for fixed k, `,

g(n, k, `) =


Ω
(
n
k−`
k−1

)
k ≤ 2`+ 1,

Ω
(
n
`+1
k−1

)
k > 2`+ 1.

(9.5)

Notice that for k ≤ 2`+1 the bounds given by Equation 9.4 and Equation 9.5 match except

for a factor of (log n)1/(k−1), but for k > 2`+ 1, these two bounds have a gap in the exponent

of n.
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Our main goal in this paper is to extend the results of Rödl and Šiňajová to the larger class

of (n, k, `)-omitting systems and improve the bounds given by Equation 9.4 and Equation 9.5.

In other words, the question we focus on is the following:

What is the value of g(n, k, `)?

Our results for (n, k, `)-omitting systems are divided into two parts. For k ≤ 2` + 1, we

believe that the behavior is similar to that of (n, k, `)-systems and prove a nontrivial lower

bound for the first open case ` = k − 2. For k > 2` + 1 we give new lower and upper bounds

which show that the minimum independence number of (n, k, `)-omitting systems has a very

different behavior than for (n, k, `)-systems.

9.1.1.2 k ≤ 2`+ 1

As mentioned above, for this range of ` and k, the issue at hand is only the polylogarithmic

factor in g(n, k, `). It follows from the definition that an (n, k, k− 1)-omitting system is also an

(n, k, k − 1)-system, thus Rödl and Šiňajová’s result implies that

g(n, k, k − 1) = f(n, k, k − 1) = Θ
(
n

1
k−1 (log n)

1
k−1

)
.

So, the first open case in the range of k ≤ 2` + 1 is ` = k − 2, and for this case we prove the

following nontrivial lower bound for g(n, k, k − 2), which improves Equation 9.5.
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Theorem 9.1.2. Suppose that k ≥ 4. Then every (n, k, k − 2)-omitting system has an inde-

pendent set of size Ω
(
n2/(k−1) (log log n)1/(k−1)

)
. In other words,

g(n, k, k − 2) = Ω
(
n

2
k−1 (log log n)

1
k−1

)
.

Unfortunately, our method for proving Theorem 9.1.2 cannot be extended to the entire

range of k ≤ 2`+ 1, but we make the following conjecture.

Conjecture 9.1.3. For all fixed integers k > ` ≥ 2 that satisfy k ≤ 2` + 1 there exists a

function ω(n)→∞ as n→∞ such that g(n, k, `) = Ω
(
n
k−`
k−1ω(n)

)
.

Theorem 9.1.2 shows that Conjecture 9.1.3 is true for ` = k − 2. The smallest open case is

k = 5 and ` = 2.

9.1.1.3 k > 2`+ 1

Recall that in the range of k > 2`+ 1 the bounds given by Equation 9.4 and Equation 9.5

leave a gap in the exponent of n. The following result shows that for a wide range of k and `

neither of them gives the correct order of magnitude.

Theorem 9.1.4. Let ` ≥ 2 and k > 2`+ 1 be fixed. Then

Ω
(

max
{
n
`+1
3`−1 , n

`+1
k−1

})
= g(n, k, `) = O

(
n
`+1
2` (log n)

1
`

)
.

Remarks.



518

(a) The lower bound n
`+1
3`−1 can be improved to n

3−
√
5

2
+o`(1) ∼ n0.38196+o`(1). See the remark

in the end of Section 9.1.3 for details.

(b) It is clear that Theorem 9.1.4 improves the bound given by Equation 9.5 for k > 3`,

and it also improves the bound given by Equation 9.4 for k > 2` + 1 as k−`
k−1 −

`+1
2` =

(`−1)(k−2`−1)
2`(k−1) > 0 for k > 2`+ 1.

It would be interesting to determine g(n, k, `) for k > 2`+ 1. Here, we are not able to offer

a conjecture for the exponent of n.

Problem 9.1.5. Determine the order of magnitude of g(n, k, `) for k > 2`+ 1.

For the first open case (k, `) = (6, 2) Theorem 9.1.4 gives Ω
(
n3/5

)
= g(n, 6, 2) = O

(
n3/4+o(1)

)
.

Similar to Remark (a) above the lower bound for g(n, 6, 2) can be improved to Ω
(
n2/3

)
. See

the remark in the end of Section 9.1.3 for details.

9.1.1.4 (n, k, `, λ)-systems and (n, k, `, λ)-omitting systems

We consider the following generalization of (n, k, `)-omitting systems and (n, k, `)-systems

in this section.

Recall that an n-vertex k-graph H is an (n, k, `, λ)-system if every set of ` vertices is

contained in at most λ edges, and H is an (n, k, `, λ)-omitting system if it does not contain

Sλ+1(`) as a subgraph.
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Define

f(n, k, `, λ) = min {α(H) : H is an (n, k, `, λ)-system} , and

g(n, k, `, λ) = min {α(H) : H is an (n, k, `, λ)-omitting system} .

When λ is a fixed constant, the value of f(n, k, `, λ) is essentially the same as f(n, k, `) (e.g.

see [222]), i.e. f(n, k, `, λ) = Θ (f(n, k, `)). Similarly, the same conclusions as in Theorems 9.1.2

and 9.1.4 also hold for g(n, k, `, λ), since Theorem 9.1.1 holds for all Sλ(`)-free hypergraphs and

using it one can easily extend the proof for the case λ = 1 to the case λ > 1. For the sake of

simplicity, we will prove Theorem 9.1.2 only for the case λ = 1.

When λ is not a constant, even the value of f(n, k, `, λ) is not known in general. Here is a

summary of the known results.

• ` = 1: An (n, k, 1, λ)-system is just a k-graph with maximum degree λ and here complete

k-graphs and Equation 9.1 yield

f(n, k, 1, λ) = Θ
( n

λ1/(k−1)

)
.

On the other hand a result of Loh [174] implies

g(n, k, 1, λ) =
n

λ+ 1
whenever (λ+ 1)(k − 1) | n.

If the divisibility condition fails then we have a small error term above.
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• ` = k − 1: Kostochka, Mubayi, and Verstraëte [150] proved that

f(n, k, k − 1, λ) = Θ

((n
λ

) 1
k−1
(

log
n

λ

) 1
k−1

)
for 1 ≤ λ ≤ n

(log n)3(k−1)2
.

• 2 ≤ ` ≤ k − 2: Tian and Liu [239] proved that

f(n, k, `, λ) = Ω

((n
λ

log
n

λ

)1/`
)

for k ≥ 5,
2k + 4

5
< ` ≤ k − 2, λ = o

(
n

5`−2k−4
3k−9

)
.

They also gave a construction which implies that

f(n, k, `, λ) = O

((
nk−`

λ

) 1
k−1 (

log
n

λ

) 1
k−1

)
for 2 ≤ ` ≤ k − 1, log n� λ� n.

Since for every λ > 0 an (n, k, `, λ)-system has size O
(
λn`
)
, it follows from Equation 9.1

that

f(n, k, `, λ) = Ω

((
nk−`

λ

) 1
k−1

)
,

which, by Tian and Liu’s upper bound, is tight up to a factor of (log n)1/(k−1) when log n �

λ� n.

Using a result of Duke, Lefmann, and Rödl [53] we are able to improve the lower bound for

f(n, k, `, λ) to match the upper bound obtained by Tian and Liu for a wide range of λ.
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Theorem 9.1.6. Let k > ` ≥ 2 be fixed. If there exists a constant δ > 0 such that 0 < λ <

n
`−1
k−2
−δ, then

f(n, k, `, λ) = Ω

((
nk−`

λ

) 1
k−1

(log n)
1

k−1

)
.

Remark. It remains open to determine f(n, k, `, λ) for Ω
(
n
`−1
k−2
−o(1)

)
= λ = O

(
nk−`

)
.

Since Theorem 9.1.1 does not hold when λ is not a constant, our method of proving Theo-

rems 9.1.2 and 9.1.4 cannot be extended to this case.

9.1.1.5 Applications in Ramsey theory

For a k-graph F the Ramsey number rk(F , t) is the smallest integer n such that every F-

free k-graph on n vertices has an independent set of size at least t. Determining the minimum

independence number of an F-free k-graph on n vertices is essentially the same as determining

the value of rk(F , t). So, our results above can be applied to determine the Ramsey number of

some hypergraphs.

First, Theorem 9.1.2 and Equation 9.4 imply the following corollary.

Corollary 9.1.7. Let k ≥ 4 and λ ≥ 2 be fixed integers. Then

Ω

(
t(k−1)/2

(log t)1/2

)
= rk(Sλ(k − 2), t) = O

(
t(k−1)/2

(log log t)1/2

)
.

Similarly, Theorem 9.1.4 gives the following corollary.
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Corollary 9.1.8. Let ` ≥ 2, k > 2`+ 1, and λ ≥ 2 be fixed integers. Then

Ω

(
t2`/(`+1)

(log t)2/(`+1)

)
= rk(Sλ(`), t) = O

(
min

{
t
3`−1
`+1 , t

k−1
`+1

})
.

Remark. According to Remark (a) after Theorem 9.1.4, the upper bound t
3`−1
`+1 above can

be improved to t
3+
√
5

2
+o`(1) ∼ t2.61803+o`(1).

The following result about rk(S
k
λ, t) follows from a more general result of Loh [174].

Theorem 9.1.9 (Loh [174]). Let t ≥ k ≥ 2, t − 1 = q(k − 1) + r for some q, r ∈ N with

0 ≤ r ≤ k − 2. Then for every λ ≥ 2

λq(k − 1) + r + 1 ≤ rk(Skλ, t) ≤ λq(k − 1) + λr + 1.

In particular, rk(S
k
λ, t) = λ(t− 1) + 1 whenever (k − 1) | (t− 1).

The k-Fan, denoted by F k, is the k-graph consisting of k+ 1 edges E1, . . . , Ek, E such that

Ei ∩ Ej = v for all 1 ≤ i < j ≤ k, where v 6∈ E, and |Ei ∩ E| = 1 for 1 ≤ i ≤ k. In other

words, F k is obtained from Skk by adding an edge omitting v that intersects each edge of Skk . It

is easy to see that F 2 is just the triangle K3. The k-graph F k was first introduced by Mubayi

and Pikhurko [195] in order to extend Mantel’s theorem to hypergraphs. Unlike the case k = 2,

where it is well known that r2(K3, t) = Θ
(
t2/log t

)
(e.g. see [5; 146]), the following result shows

that rk(F
k, t) = Θ(t2) for all k ≥ 3.
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Theorem 9.1.10. Suppose that t ≥ k ≥ 3. Then

⌊
t

2

⌋⌊
t− 1

2(k − 2)

⌋
< rk(F

k, t) ≤ t(t− 1) + 1.

As t→∞, it remains open to determine lim rk(F
k, t)/t2.

9.1.2 Proof of Theorem 9.1.2

In this section we prove Theorem 9.1.2. Let us show some preliminary results first.

9.1.2.1 Preliminaries

For a pair of distinct vertices u, v ∈ V (H) the (k− 1)-codegree of u and v is the number of

(k−1)-sets S ⊂ V (H) such that S∪{u} ∈ H and S∪{v} ∈ H. Denoted by Γ(H) the maximum

(k − 1)-codegree of H.

The random greedy independent set algorithm. We begin with H(0) = H, V (0) = V (H)

and I(0) = ∅. Given independent set I(i) and hypergraph H(i) on vertex set V (i), a vertex

v ∈ V (i) is chosen uniformly at random and added to I(i) to form I(i + 1). The vertex set

V (i + 1) is set equal to V (i) less v and all vertices u such that {u, v} is an edge in H(i). The

hypergraph H(i+ 1) is formed form Hi by

1. removing v from all edges of size at least three in H(i) that contain v, and

2. removing every edge that contains a vertex u such that the pair {u, v} is an edge of H(i).

The process terminates when V (i) = ∅. At this point I(i) is a maximal independent set in H.

Let imax denote the step where the algorithm terminates.
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In [18], Bennett and Bohman analyzed the random greedy independent set algorithm using

the differential equation method, and they proved that if a k-graph satisfies certain degree

and codegree conditions, then the random greedy independent set algorithm produces a large

independent set with high probability.

Theorem 9.1.11 (Bennett–Bohman [18]). Let k and ε > 0 be fixed. Let H be a D-regular

k-graph on n vertices such that D > nε. If

∆i(H) < D
k−i
k−1
−ε for 2 ≤ i ≤ k − 1, and Γ(H) < D1−ε,

then the random greedy independent set algorithm produces an independent set I in H of size

Ω
(

(log n)1/(k−1) · n/D1/(k−1)
)

with probability 1− o(1).

The lower bound on independence number in Theorem 9.1.11 can easily be proved by ap-

plying a theorem of Duke–Lefmann–Rödl [53] (see Theorem 9.1.13), so the main novelty of

Theorem 9.1.11 is the fact that the random greedy independent set algorithm produces an

independent set of this size with high probability.

Let S ⊂ V (H) be a set of bounded size s such that S contains no edge in H. A nice

property of the random greedy independent set algorithm is that S is contained in the set

I(i) with probability (1 + o(1)) (i/n)s, which is almost the probability that S is contained in a

random i-subset of V (H).

Using this property we can easily control the size of the induced subgraph of G on I(i),

where G is a hypergraph that has the same vertex set with H.
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Proposition 9.1.12 (Bennett–Bohman [18]). Let H be a hypergraph that satisfies the condi-

tions in Theorem 9.1.11 and G be a k′-graph on V (H) (i.e. G and H are on the same vertex

set). If i ≤ imax is fixed, then the expected number of edges of G contained in I(i) is at most

(1 + o(1)) (i/n)k
′
· |G|.

For 2 ≤ j ≤ k − 1 and two edges E,E′ in a k-graph H we say {E,E′} is a (2, j)-cycle if

|E ∩ E′| = j. Denote by CH(2, j) the number of (2, j)-cycles in H. Duke, Lefmann, and Rödl

[53] proved the following result for hypergraphs with few (2, j)-cycles.

Theorem 9.1.13 (Duke–Lefmann–Rödl [53]). Let H be a k-graph on n vertices satisfying

∆(H) ≤ tk−1, where t � k. If CH(2, j) ≤ nt2k−j−1−ε for 2 ≤ j ≤ k − 1 and some constant

ε > 0, then α(H) ≥ c(k, ε) (log t)1/(k−1) · n/t.

Recall that a hypergraph is linear if every pair of edges has at most one vertex in common.

It is easy to see that H is linear iff CH(2, j) = 0 for 2 ≤ j ≤ k− 1. The following easy corollary

of Theorem 9.1.13 will be handy for proofs in the next section.

Corollary 9.1.14 (see e.g. [108]). Suppose that H is a linear k-graph with n vertices and

average degree d. Then α(H) = Ω
(

(log d)1/(k−1) · n/d1/(k−1)
)

.

For a (not necessarily uniform) hypergraph H on n vertices (assuming that V (H) = [n]) and

a family F = {G1, . . . ,Gn} of m-vertex k-graphs with V (G1) = · · · = V (Gn) = VF the Cartesian

product of H and F , denoted by H�F , is a hypergraph on V (H)× VF and

H�F = {(E, v) : E ∈ H and v ∈ VF} ∪ {(i, F ) : i ∈ [n] and F ∈ Gi} .
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Since the hypergraphs we considered here are not necessarily regular, Theorem 9.1.11 cannot

be applied directly to our situations. To overcome this issue we use an adaption of a trick used

by Shearer in [226], that is, for every nonregular hypergraph H we take the Cartesian product

of H and a family of linear hypergraphs to get a new hypergraph Ĥ that is regular. Then we

apply Theorem 9.1.11 to Ĥ to get a large independent set, and by the Pigeonhole principle,

this ensures that H has a large independent set.

First, we need the following theorem to show the existence of sparse regular linear hyper-

graphs.

Given two k-graphs H1 and H2 with the same number of vertices a packing of H1 and H2

is a bijection φ : V (H1)→ V (H2) such that φ(E) 6∈ H2 for all E ∈ H1.

Theorem 9.1.15 (Lu–Székely [179]). Let H1 and H2 be two k-graphs on n vertices. If

∆(H1)|H2|+ ∆(H2)|H1| <
1

ek

(
n

k

)
,

then there is a packing of H1 and H2.

Theorem 9.1.15 enables us to construct sparse regular linear hypergraphs inductively.

Lemma 9.1.16. For every positive integer n that satisfies k | n and every positive integer d

that satisfies

d ≤ (n− k + 2)(n− k + 1)

ek2(k − 1)2n
+ 1,
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there exists a d-regular linear k-graph with n vertices.

Proof. We proceed by induction on d and note that the case d = 1 is trivial since a perfect

matching on n vertices is a 1-regular linear k-graph. Now suppose that d ≥ 2. By the induction

hypothesis, there exists a (d − 1)-regular linear k-graph on n vertices, and let Hd−1 be such a

k-graph. Let H1 be a perfect matching on n vertices. Define the extended k-graph Ĥ1 of H1 as

Ĥ1 =

{
{u, v} ∪A : {u, v} ∈ ∂k−2H1 and A ∈

(
V (H1) \ {u, v}

k − 2

)}
.

It is clear from the definition that H1 ⊂ Ĥ1, |Ĥ1| < n
k

(
k
2

)(
n
k−2

)
, and Ĥ1 is regular. So,

∆(Ĥ1) =
k|Ĥ1|
n

<
k

n

n

k

(
k

2

)(
n

k − 2

)
=

(
k

2

)(
n

k − 2

)
.

By assumption

∆(Hd−1)|Ĥ1|+ ∆(Ĥ1)|Hd−1| < (d− 1)
n

k

(
k

2

)(
n

k − 2

)
+

(d− 1)n

k

(
k

2

)(
n

k − 2

)
= 2(d− 1)

n

k

(
k

2

)(
n

k − 2

)
≤ 1

ek

(
n

k

)
.

Therefore, by Theorem 9.1.15, there exist a bijection φ : V (Hd−1)→ V (H1) such that |φ(E) ∩

E′| ≤ k−1 for all E ∈ Hd−1 and E′ ∈ Ĥ1, and this implies that |φ(E)∩E′′| ≤ 1 for all E ∈ Hd−1

and all E′′ ∈ H1. Therefore, H1 ∪ φ (Hd−1) is a d-regular linear k-graph on n vertices.
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9.1.2.2 Proofs

First we use Theorem 9.1.11 and Proposition 9.1.12 to prove a result about the common

independent set of two hypergraphs on the same vertex set.

Theorem 9.1.17. Let k1, k2 ≥ 2 be integers, ε > 0, n,D ∈ N, and d > 0. Suppose that

(a) H is an n-vertex k1-graph, G is an n-vertex k2-graph, and V (H) = V (G) = V ,

(b) D > nε and d (log n/D)
k2−1
k1−1 � 1,

(c) H satisfies that ∆(H) ≤ D,

∆i(H) < D
k1−i
k1−1

−ε
for 2 ≤ i ≤ k1 − 1, and Γ(H) < D1−ε,

(d) G satisfies that d(G) ≤ d and

CG(2, i)� n (D/log n)
2k2−i−1
k1−1 for 2 ≤ i ≤ k2 − 1.

Then, α (H ∪ G) = Ω
(
ω · n/d1/(k2−1)

)
, where

ω = ω(n,D, d, k1, k2) =

(
log

(
(log n/D)

k2−1
k1−1 d

))1/(k2−1)

.

Remarks.

• Although Theorem 9.1.17 imposes no condition on k1 and k2, we will only apply the result

in the case k2 = k1 + 1.
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• Spencer’s bound Equation 9.1 implies that α(G) = Ω
(
n/d1/(k2−1)

)
. Theorem 9.1.17

improves it in two ways: first it improves the bound by a factor of ω, second it is a

lower bound for the independence number of G ∪ H. Ajtai, Komlós, Pintz, Spencer, and

Szemerédi’s result Equation 9.2 implies that the upper bound for ω is (log n)1/(k2−1).

However, we are not able to show that ω = Ω
(
(log n)1/(k2−1)

)
in general, and it would be

interesting to determine the optimal value of ω.

• If H and G satisfy conditions (a) and (c) in Theorem 9.1.17 and also satisfy

(b′) D > nε and d (log n/D)
k2−1
k1−1 � 1,

then α (H ∪ G) = Ω
(
(log n)1/(k1−1) · n/D1/(k1−1)

)
. Moreover, if G = ∅, then α(H) =

Ω
(
(log n)1/(k1−1) · n/D1/(k1−1)

)
which is the bound in Theorem 9.1.11. The proof is sim-

ilar to the proof of Theorem 9.1.17.

Proof of Theorem 9.1.17. For 2 ≤ i ≤ k2 − 1 define

Gi =

{
S ∈

(
V

2k2 − i

)
: G[S] contains a (2, i)-cycle

}
.

Fix m ∈ N such that D � m = O(nk1), and k1 | m. Notice that D has a trivial upper bound

nk1−1, so such an integer m exists. For every v ∈ V let Dv = D − dH(v). Since m � D and
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k1 | m, by Lemma 9.1.16, there exists a Dv-regular linear k1-graph F(v) on [m] for every v ∈ V .

Let

H′ = H ∪ G ∪

 ⋃
2≤i≤k2−1

Gi
 , F = {F(v) : v ∈ V }, and Ĥ′ = H′�F .

Note that Ĥ′ is consisting of

1. the k1-graph Ĥ = H�F ,

2. the k2-graph Ĝ that is the union of m pairwise vertex-disjoint copies of G, and

3. the (2k2 − i)-graph Ĝi that is the union of m pairwise vertex-disjoint copies of Gi for

2 ≤ i ≤ k2 − 1.

For every v ∈ V (Ĥ) we have dĤ(v) = dH(v) +Dv = D. Moreover,

∆i(Ĥ) = ∆i(H) < D
k1−i
k1−1

−ε
for 2 ≤ i ≤ k1 − 1, and Γ(Ĥ) = Γ(H) < D1−ε,

Applying the random greedy independent set algorithm and Theorem 9.1.11 to Ĥ , we obtain

an independent set Î of size at least c (log nm)1/(k1−1) · nm/D1/(k1−1) for some constant c > 0

with probability 1 − o(1). Let p = c ((log nm)/D)1/(k1−1) and we may assume that |Î| = pnm

since otherwise we can take the set of the first pnm vertices generated by the random greedy

independent set algorithm instead.
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Applying Proposition 9.1.12 to Ĝ, Ĝ2, . . . , Ĝk2−1 and by assumption (d) we obtain

E
[∣∣∣Ĝ[Î]

∣∣∣] ≤ (1 + o(1))pk2 |Ĝ| < 2dnmpk2 ,

and for 2 ≤ i ≤ k2 − 1

E
[∣∣∣Ĝi[Î]

∣∣∣] = (1 + o(1))p2k2−i ·m · CG(2, i) = o(pnm).

So, by Markov’s inequality and the union bound, with probability at least 1/2 both

∣∣∣Ĝ[Î]
∣∣∣ ≤ 10dnmpk2 and

∣∣∣Ĝi[Î]
∣∣∣ = o(pnm) ∀ 2 ≤ i ≤ k2 − 1

hold.

Fix a set Î such that |Î| = pnm and the events above hold. Then by removing o(pnm)

vertices we obtain a subset Î ′ ⊂ Î such that

∣∣∣Ĝi[Î]
∣∣∣ = 0 for 2 ≤ i ≤ k2 − 1.

In other words, the k2-graph Ĝ[Î ′] is linear. Since

d
(
Ĝ[Î ′]

)
≤ k2 · 10dnmpk2

(1− o(1))pnm
≤ 20k2dp

k2−1,
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by Corollary 9.1.14, it has an independent set I ′ of size at least

Ω

(
pnm

(20k2dpk2−1)1/(k2−1)

(
log 20dpk2−1

) 1
k2−1

)
= Ω

(
m

n

d1/(k2−1)

(
log pk2−1d

) 1
k2−1

)
= Ω

(
m

n

d1/(k2−1)
ω
)
.

Here we used assumption (b) to ensure that 20k2dp
k2−1 ≥ 1.

By the Pigeonhole principle, there exists j ∈ [m] such that I = I ′ ∩ (V × {j}) has size at

least |Î|/m = Ω
(
ω · n/d1/(k2−1)

)
, and it is clear that I is independent in both H and G.

Next we use Theorem 9.1.17 to prove Theorem 9.1.2. The idea is to first decompose an

(n, k, k − 2)-omitting system H into two parts: Hk−1 ⊂ ∂H and Hk ⊂ H, and then apply

Theorem 9.1.17 to Hk−1 and Hk to find a large set I ⊂ V that is independent in both of them.

It will be easy to see that the set I is independent in H.

Proof of Theorem 9.1.2. Let H be an (n, k, k − 2)-omitting system and let V = V (H). By

Theorem 9.1.1, there exists a constant C1 such that |H| ≤ C1n
k−2. Let β = β(k) > 0 be a

constant such that k
2(k−1) < β < 1, for example, take β = 4/5. Define

Hk−1 =

{
A ∈ ∂H : dH(A) ≥ n

k−3
k−1

(log n)β

}
and Hk =

{
E ∈ H :

(
E

k − 1

)
∩Hk−1 = ∅

}
.
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Let k1 = k − 1, k2 = k, D = nk−4+2/(k−1)(log n)β, d = C1n
k−3, and ε be a constant such

that 0 < ε < 1/(k − 1). Then D > nε and

d

(
log n

D

) k2−1
k1−1

= C1n
k−3

(
log n

nk−4+ 2
k−1 (log n)β

) k−1
k−2

= C1 (log n)(1−β) k−1
k−2 � 1.

Therefore, condition (b) in Theorem 9.1.17 is satisfied. Next we show that Hk−1 and Hk satisfy

(c) and (d) in Theorem 9.1.17 with our choice of k1, k2, D, d, ε.

Claim 9.1.18. The (k − 1)-graph Hk−1 is an (n, k − 1, k − 2)-system with ∆k−3(Hk−1) ≤

n2/(k−1)(log n)β.

Proof. First we prove that Hk−1 is an (n, k− 1, k− 2)-system. Indeed, suppose to the contrary

that there exist e1, e2 ∈ Hk−1 such that S = e1 ∩ e2 has size k − 2. By the definition of

Hk−1, |NH(ei)| ≥ n
k−3
k−1 /(log n)β > 2k for i = 1, 2. So there exist v1, v2 ∈ V \ (e1 ∪ e2) such that

Ei = ei∪{vi} ∈ H for i = 1, 2. However, E1∩E2 = S has size k−2, contradicting the assumption

that H is an (n, k, k − 2)-omitting system. Therefore, Hk−1 is an (n, k − 1, k − 2)-system.

Now suppose to the contrary that there exists a set A ⊂ V of size k−3 with dHk−1
(A) = m >

n2/(k−1)(log n)β. Since Hk−1 is an (n, k − 1, k − 2)-system, LHk−1
(A) is a matching consisting

of m edges. Suppose that LHk−1
(A) = {e1, . . . , em}, and let Bi = A ∪ ei for 1 ≤ i ≤ m. Since

Bi ∈ Hk−1, by definition, there exists a set Ni ⊂ V of size at least n
k−3
k−1 /(log n)β such that

Bi ∪ {u} ∈ H for all u ∈ Ni.
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Suppose that there exists v ∈ Ni ∩ Nj for some distinct i, j ∈ [m]. Then the two sets

A∪ei∪{v} and A∪ej∪{v} are edges in H and have an intersection of size k−2, a contradiction.

Therefore, Ni ∩Nj = ∅ for all distinct i, j ∈ [m]. It follows that

n = |V | ≥
∑
i∈[m]

|Ni| ≥ mn
k−3
k−1 /(log n)β > n

2
k (log n)βn

k−3
k−1 /(log n)β > n,

a contradiction. Therefore, ∆k−3(Hk−1) ≤ n2/(k−1)(log n)β.

Since ∆k−3(Hk−1) ≤ n2/(k−1)(log n)β, for every set S ⊂ V of size i with i ∈ [k − 4] the link

LHk−1
(S) is an

(
n, k − 1− i, k − 3− i, n2/(k−1)(log n)β

)
-system. Therefore, for i ∈ [k − 4]

∆i(Hk−1) ≤ n
2

k−1 (log n)β
(

n

k − 3− i

)
/

(
k − 1− i
k − 3− i

)
< nk−3−i+ 2

k−1 (log n)β.

Since

(
k − 4 +

2

k − 1

)
k − 1− i
k − 2

−
(
k − 3− i+

2

k − 1

)
=

2(i− 1)

k − 1
> ε,

we obtain

∆i(Hk−1) < nk−3−i+ 2
k−1 (log n)β < D

k−1−i
k−1−1

−ε for 2 ≤ i ≤ k − 3.

On the other hand, since H is an (n, k− 1, k− 2)-system, ∆k−2(Hk−1) ≤ 1 < D
k−1−(k−2)
k−1−1

−ε and

Γ(Hk−1) = 0 < D1−ε. Therefore, Hk−1 satisfies condition (c) in Theorem 9.1.17.
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Claim 9.1.19. The k-graph Hk satisfies d(Hk) ≤ C1kn
k−2,

CHk(2, i) = O
(
n2k−4−i

)
for 2 ≤ i ≤ k − 3,

CHk(2, k − 2) = 0, and CHk(2, k − 1) = O
(
nk−2+ k−3

k−1 /(log n)β
)

.

Proof. First, it is clear that CHk(2, k − 2) = 0 since there is no pair of edges in Hk with an

intersection of size k − 2.

Let 2 ≤ i ≤ k − 3 and S ⊂ V be a set of size i. Since Hk is an (n, k, k − 2)-omitting

system, the link LHk(S) is an (n, k − i, k − 2 − i)-omitting system. So, by Theorem 9.1.1,

|LHk(S)| = O
(
nk−2−i), which implies that

CHk(2, i) ≤ |Hk| ·
(
k

i

)
·O
(
nk−2−i

)
= O

(
n2k−4−i

)
for 2 ≤ i ≤ k − 3.

Now let S ⊂ V be a set of size k − 1. By the definition of Hk, dHk(S) ≤ n2/(k−1)/(log n)β.

Therefore,

CHk(2, k − 1) ≤ |Hk| ·
(

k

k − 1

)
· n

k−3
k−1 /(log n)β = O

(
nk−2+ k−3

k−1 /(log n)β
)
.
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Since

1 +

(
k − 4 +

2

k − 1

)
2k − 1− i
k − 2

− (2k − 4− i) =
2(i− 1)

k − 1
> ε,

by Claim 9.1.19,

CHk(2, i) = O
(
n2k−4−i

)
= o

(
n (D/log n)

2k−i−1
k−1−1

)
for 2 ≤ i ≤ k − 3.

Moreover, CHk(2, k − 2) = 0� n (D/log n)
2k−(k−2)−1
k−1−1 , and

CHk(2, k − 1) = O

(
nk−2+ k−3

k−1

(log n)β

)
� nk−2+ k−3

k−1

(log n)(1−β) k
k−2

= n

(
D

log n

) 2k−(k−1)−1
k−1−1

,

where the inequality follows from the assumption that β > k
2(k−1) . Therefore, Hk satisfies

condition (d) in Theorem 9.1.17.

So, by Theorem 9.1.17, there exists a set I ⊂ V of size Ω
(
ω · n/n

k−3
k−1

)
= Ω

(
n2/(k−1)ω

)
such

that I is independent in both Hk−1 and Hk. Here

ω =

(
log

(
((log n)/D)

k2−1
k1−1 d

))1/(k2−1)

=
(

log (log n)(1−β) k−1
k−2

)1/(k−1)

= Ω
(

(log log n)1/(k−1)
)
.
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9.1.3 Proof of Theorem 9.1.4

9.1.3.1 Lower bound

We prove the lower bound in Theorem 9.1.4 in this section. The proof idea is similar to

that used in the proof of Theorem 9.1.2, that is, we decompose an (n, k, `)-omitting system

into many different hypergraphs so that each hypergraph contains the information of a certain

subset of edges in the original hypergraph. Then we use a probabilistic argument to show that

there exists a large common independent set of these hypergraphs.

Recall that an n-vertex k-graph H is an (n, k, `, λ)-omitting system iff it is Sλ+1(`)-free.

While Theorem 9.1.4 as stated provides a lower bound on the independence number of (n, k, `)-

omitting systems, the result holds in the more general setting of (n, k, `, λ)-omitting systems.

We present the proof in this more general setting.

Let k ≥ k0 > ` ≥ 1, λ ≥ 2, and H be an Sλ(`)-free k-graph. We say H is (k0, λ)-

indecomposable if

• k = k0, or

• k > k0 and H is {Sλ1(k − 1), . . . , Sλk−k0 (k0)}-free, where λi = (kλ)2i−1

for i ∈ [k − k0].

Otherwise, we say H is (k0, λ)-decomposable.

Call a family F of hypergraphs (k0, λ)-indecomposable if every member in it is (k0, λ)-

indecomposable. Otherwise, we say F is (k0, λ)-decomposable.

The decomposition algorithm.

Input: An Sλ(`)-free k-graph H and a threshold k0 with k ≥ k0 > `.
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Output: A family F of Sλ(`)-free (k0, λ)-indecomposable hypergraphs.

Operation: We start with the family F = {H}. If F is (k0, λ)-indecomposable, then we

terminate this algorithm. Otherwise, let G ∈ F be a (k0, λ)-decomposable hypergraph and let

k′ denote the size of each edge in G. Let i0 ∈ {1, . . . , k′ − k0} be the smallest integer such that

G contains a copy of Sλi0 (k′ − i0), where λi0 = (kλ)2i0−1

. Define

Gk′−i0 =

{
A ∈

(
V (H)

k′ − i0

)
: dG(A) ≥ λi0

}
and Gk′ =

{
B ∈ G :

(
B

k′ − i0

)
∩ Gk′−i0 = ∅

}
.

Update F by removing G and adding Gk′−i0 and Gk′ . Repeat this operation until F is (k0, λ)-

indecomposable.

We need the following lemmas to show that the algorithm defined above always terminates.

Write ν(H) for the size of a maximum matching in H.

Lemma 9.1.20. Let H be an
{
Sλ1(k − 1), . . . , Sλk−1

(1)
}

-free k-graph with m edges. Then

ν(H) ≥ m∏k−1
i=1 (i+ 1)λi

.

Proof. For j ∈ [k−1] let Λj =
∏j
i=1(i+1)λi. We prove this lemma by induction on k. Suppose

that k = 2. Since H is Sλ1(1)-free, dH(v) ≤ λ1 − 1 for all v ∈ V (H). Therefore, by greedily

choosing an edge e and removing all edges that have nonempty intersection with e, we obtain

at least m/(2λ1) pairwise disjoint edges in H.

Now suppose that k ≥ 3. We claim that dH(v) ≤ (λk−1 − 1)Λk−2 for all v ∈ V (H). Indeed,

suppose to the contrary that there exists v0 ∈ V (H) with dH(v0) ≥ (λk−1 − 1)Λk−2 + 1. Since
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H is
{
Sλ1(k − 1), . . . , Sλk−2

(2)
}

-free, the link LH(v0) is
{
Sλ1(k − 2), . . . , Sλk−2

(1)
}

-free. By the

induction hypothesis,

ν(LH(v0)) ≥ (λk−1 − 1)Λk−2 + 1

Λk−2
> λk−1 − 1,

but this contradicts the assumption that H is Sλk−1
(1)-free. Therefore, dH(v) ≤ (λk−1−1)Λk−2

for all v ∈ V (H). Then, similar to the case of k = 2, by greedily choosing an edge e and removing

all edges that have nonempty intersection with e, we obtain

ν(H) ≥ m

k(λk−1 − 1)Λk−2 + 1
>

m

Λk−1

completing the proof.

Let H be an Sλ(`)-free k-graph. Define

Hk−1 =

{
A ∈

(
V (H)

k − 1

)
: dH(A) ≥ kλ

}
.

If H is
{
Sλ′1(k − 1), . . . , Sλ′

k−k′−1
(k′ + 1), Sλ(`)

}
-free for some ` < k′ ≤ k − 2, then also define

Hk′ =

{
A ∈

(
V

k′

)
: dH(A) ≥ kλ

k−k′−1∏
i=1

(i+ 1)λ′i

}
.

Lemma 9.1.21. The hypergraphs Hk′ and Hk−1 defined above are Sλ(`)-free.



540

Proof. We may only prove that Hk′ is Sλ(`)-free, since the proof for Hk−1 is basically the same.

Suppose to the contrary that there exists {A1, . . . , Aλ} ⊂ Hk′ forming a copy of Sλ(`). Since H

is {Sλ′1(k−1), . . . , Sλ′
k−k′−1

(k′+1)}-free, the link LH(Ai) is {Sλ′1(k−k′−1), . . . , Sλ′
k−k′−1

(1)}-free

for i ∈ [λ]. Let Λ′ =
∏k−k′−1
i=1 (i+1)λ′i. It follows from the definition ofHk′ that |LH(Ai)| ≥ kλΛ′

for i ∈ [λ]. So, by Lemma 9.1.20, there are at least kλΛ′/Λ′ ≥ kλ pairwise disjoint edges in

LH(Ai) for i ∈ [λ]. Therefore, there exist λ pairwise disjoint (k − k′)-sets B1, . . . , Bλ such that

Bi ⊂ V \
(⋃λ

i=1Ai

)
and Ei = Ai ∪Bi ∈ H for i ∈ [λ]. It is clear that {E1, . . . , Eλ} is a copy of

Sλ(`) in H, a contradiction.

Recall that in the decomposition algorithm we defined

Gk′−i0 =

{
A ∈

(
V (H)

k′ − i0

)
: dG(A) ≥ λi0

}
, and Gk′ =

{
B ∈ G :

(
B

k′ − i0

)
∩ Gk′−i0 = ∅

}
,

where i0 ∈ {1, . . . , k′−k0} is the smallest integer such that G contains a copy of Sλi0 (k′−i0) and

λi0 = (kλ)2i0−1

. It is clear from the definition that Gk′ is Sλi0 (k′ − i0)-free. On the other hand,

Lemma 9.1.21 implies that both Gk′ and Gk′−i0 are Sλ(`)-free. Therefore, the new hypergraphs

Gk′−i0 and Gk′ we added into F either have a smaller edge size (the case Gk′−i0) or forbid one

more hypergraph (the case Gk′). So the algorithm must terminate after finite many steps, and it

is easy to see that the outputted family F has size at most 2k−k0 . Indeed, the latter statement

can be proved by associating a binary tree TH to the algorithm: the vertex set of TH is the

collection of all hypergraphs (including H) generated in each operation of the algorithm, the

root of TH is H, and the children of a vertex G are Gk′−i0 and Gk′ (if they are defined). It is
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easy to see that the height of TH is at most k− k0 and the outputted family F is the collection

of hypergraphs that are leaf vertices of TH. Therefore, |F| ≤ 2k−k0 .

The following lemma shows that in order to find a large independent set in H it suffices to

find a large common independent set of all hypergraphs in F .

Lemma 9.1.22. Let H be an Sλ(`)-free k-graph and F be the outputted family after applying

the decomposition algorithm to H. Then

α(H) ≥ α

(⋃
G∈F
G

)
.

Proof. Suppose that F = {H1, . . . ,Hm} and I ⊂ V (H) is independent in Hi for i ∈ [m]. It is

clear from the definition that for every E ∈ H there is a subset E′ ⊂ E such that E′ ∈ Hi for

some i ∈ [m]. Since I is independent Hi, E′ 6⊂ I and it follows that E 6⊂ I. Therefore, I is

independent in H.

We also need the following lemma which gives an upper bound for the size of an indecom-

posable hypergraph.

Theorem 9.1.23 (Deza–Erdős–Frankl [52]). Let r ≥ 1, t ≥ 2 be integers and L = {`1, . . . , `r}

be a set of integers with 0 ≤ `1 < · · · < `r < k. If an n-vertex k-graph H is St(`)-free for every

` ∈ [k] \ L, then |H| = O(nr−1) unless (`2 − `1) | · · · | (`r − `r−1) | (k − `r).

Lemma 9.1.24. Let k ≥ k0 > ` ≥ 1, λ ≥ 2 be integers, k > 2` + 1, k0 ≥ ` + 3, and H be a

Sλ(`)-free (k0, λ)-indecomposable k-graph with n vertices. Then there exists a constant Ck,`,λ

such that |H| ≤ Ck,`,λnmin{k0−2,k−`−1}.
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Proof. Since H is Sλ(`)-free and k > 2` + 1, by the results in [99], |H| = O
(
nk−`−1

)
. On

the other hand, since H is {Sλ1(k − 1), . . . , Sλk−k0 (k0), Sλ(`)}-free, applying Theorem 9.1.23

to H with t = max{λ1, . . . , λk−k0 , λ} and L = {0, 1, . . . , ` − 1, ` + 1, . . . , k0 − 1} we obtain

|H| = O
(
nk0−2

)
.

Now we are ready to prove the lower bound in Theorem 9.1.4.

Proof of the lower bound in Theorem 9.1.4. We may assume that k > 3` since otherwise by

Equation 9.5 we are done. Let H be an Sλ(`)-free k-graph on n vertices and V = V (H). Apply

the decomposition algorithm toH with the threshold k0 = 2`+1, and let F denote the outputted

family. Suppose that F = {H1, . . . ,Hm} for some integer m. For i ∈ [m] let ki denote the size

of each edge in Hi and note from the definition of the algorithm that 2` + 1 ≤ ki ≤ k. Let

C = max{Cki,`,λ : 2`+1 ≤ ki ≤ k}, where Cki,`,λ is the constant given by Lemma 9.1.24. Choose

a set I ⊂ V such that every vertex is included in I independently with probability p = δn−
2`−2
3`−1 ,

where δ > 0 is a small constant that satisfies Cmδ3`−2 ≤ 1/4. Then by Lemma 9.1.24,

E

[
|I| −

m∑
i=1

|Hi[I]|

]
= E[|I|]−

m∑
i=1

E[|Hi[I]|]

≥ pn−
m∑
i=1

Cpkinmin{2`−1,ki−`−1}

= pn− C

 ∑
i∈[m]:ki≥3`

pkin2`−1 +
∑

i∈[m]:ki≤3`−1

pkinki−`−1


≥ δn

`+1
3`−1 − Cmδ3`n

`+1
3`−1 − Cmδ3`−1n

`+1
3`−1 ≥ δn

`+1
3`−1 /2.
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Therefore, there exists a set I of size Ω
(
n
`+1
3`−1

)
such that Hi[I] = ∅ for i ∈ [m], and it follow

from Lemma 9.1.22 that α(H) ≥ |I| = Ω
(
n
`+1
3`−1

)
.

Remark. The lower bound n
`+1
3`−1 can be improved by optimizing the choice of k0. Indeed,

suppose that ` is sufficiently large. Let

k0 =

(√
5 + 1

2
+ o`(1)

)
`, s =

(√
5 + 3

2
+ o`(1)

)
`, and p = δn

−
(√

5−1
2

+o`(1)
)
,

where δ > 0 is a sufficiently small constant. Repeating the argument above we obtain

E

[
|I| −

m∑
i=1

|Hi[I]|

]
= E[|I|]−

m∑
i=1

E[|Hi[I]|]

= pn−

∑
ki≥s

E[|Hi[I]|] +
∑

2`+1≤ki≤s
E[|Hi[I]|] +

∑
k0<ki≤2`

E[|Hi[I]|]

 .

By Lemma 9.1.24, we have

∑
ki≥s

E[|Hi[I]|] ≤ C
∑
ki≥s

pkink0−2.

By Theorem 9.1.1, we have

∑
2`+1≤ki≤s

E[|Hi[I]|] ≤ C
∑

2`+1≤ki<s
pkinki−`−1 and

∑
k0<ki≤2`

E[|Hi[I]|] ≤ C
∑

k0≤ki≤2`

pkin`.
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Therefore,

E

[
|I| −

m∑
i=1

|Hi[I]|

]
≥ pn− C

∑
ki≥s

pkink0−2 +
∑

2`+1≤ki<s
pkinki−`−1 +

∑
k0≤ki≤2`

pkin`


≥ pn− Cm

(
psnk0−2 + ps−1ns−`−2 + pk0n`

)
≥ δn

(
3−
√
5

2
+o`(1)

)
/2,

which implies that H contains an independent set I of size Ω

(
n

(
3−
√
5

2
+o`(1)

))
.

Similarly, the lower bound for g(n, 6, 2) can be improved from Ω
(
n3/5

)
to Ω

(
n2/3

)
by

letting k0 = 4. Indeed, it is easy to see that when applying the decomposition algorithm to

an n-vertex Sλ(2)-free 6-graph H with the threshold k0 = 4, the outputted family F consists

of three hypergraphs: an Sλ(2)-free (4, λ)-indecomposable 6-graph H1, an Sλ(2)-free (4, λ)-

indecomposable 5-graph H2, and an Sλ(2)-free 4-graph H3. By Theorem 9.1.1 (the stronger

version in [99]), |H2| = O
(
n2
)

and |H3| = O
(
n2
)
. By Theorem 9.1.23, H1 = O

(
n2
)
. So, it

follows from a similar probabilistic argument as above that α(H) ≥ α(H1∪H2∪H3) = Ω
(
n2/3

)
.

9.1.3.2 Pseudorandom bipartite graphs

Our construction for the upper bound in Theorem 9.1.4 is related to some pseudorandom

bipartite graphs, so it will be convenient to introduce some definitions and results related to

pseudorandom bipartite graphs.
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For a graph G on n vertices (assuming that V (G) = [n]) the adjacency matrix AG of G is

an n× n matrix whose (i, j)-th entry is

AG(i, j) =


1, if {i, j} ∈ E(G),

0, otherwise.

Denote by G(V1, V2) a bipartite graph with two parts V1 and V2, and that say G(V1, V2) is

(d1, d2)-regular if dG(v) = di for all v ∈ Vi and i = 1, 2.

For a bipartite G = G(V1, V2) denote by λ(G) the second largest eigenvalue of AG. Suppose

that G is (d1, d2)-regular. Then we say G is pseudorandom if λ(G) = O
(
max{

√
d1,
√
d2}
)
.

The Zarankiewicz number z(m,n, s, t) is the maximum number of edges in a bipartite graph

G(V1, V2) with |V1| = m, |V2| = n such that G contains no complete bipartite graph with s

vertices in V1 and t vertices in V2.

Our construction of (n, k, `)-systems is related to the lower bound (construction) for z(m,n, s, t).

More specifically, it is related to a construction defined by Alon, Mellinger, Mubayi and Ver-

straëte in [9], which was used to show that z(n`/2, n, 2, `) = Ω
(
n(`+1)/2

)
.

Let q be a prime power and F = GF (q) be the finite field of size q. Denote by F[X] the

collection of all polynomials over F. The graph G(q`, q2, 2, `) is a bipartite graph with two parts

V1 and V2, where

V1 = {P (x) : P (x) ∈ F[X], deg(P (x)) ≤ `− 1} , and V2 = F× F,
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and for every P (x) ∈ V1 and every (x, y) ∈ V2, the pair {P (x), (x, y)} is an edge in G(q`, q2, 2, `)

iff y = P (x).

It is clear that G(q`, q2, 2, `) does not contain a complete bipartite graph with two vertices in

V1 and ` vertices in V2 since two distinct polynomials of degree at most `−1 over F can have the

same value in at most `− 1 points. It is also easy to see that G(q`, q2, 2, `) is (q, q`−1)-regular.

The proof of the following result concerning the eigenvalues of G(q`, q2, 2, `) can be found

in [78].

Lemma 9.1.25 ([78]). The eigenvalues of the adjacency matrix of G(q`, q2, 2, `) are

q`/2, q(`−1)/2, . . . , q(`−1)/2︸ ︷︷ ︸
q2−q times

, 0, . . . , 0,−q(`−1)/2, . . . ,−q(`−1)/2︸ ︷︷ ︸
q2−q times

,−q`/2.

In particular, G(q`, q2, 2, `) is pseudorandom.

9.1.3.3 Upper bound

We prove the existence of (n, k, `)-systems with independence number O
(
n
`+1
2` (log n)

1
`

)
in this section. Our construction is obtained from a random subgraph of the bipartite graph

G(q`, q2, 2, `) defined in the last section, and the method we used here is similar to that used

in [149; 78].

First let us summarize the constructions used in [149] and [78] into a more general form.

Since we cannot ensure the random subgraph chosen from G(q`, q2, 2, `) is exactly (d1, d2)-

regular for some d1, d2 ∈ N, it will be useful to consider the following more general setting.

Let C, d1, d2 ≥ 1 be real numbers. A hypergraph H is
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(a) (C, d1)-uniform if d1/C ≤ |E| ≤ Cd1 for all E ∈ H, and

(b) (C, d2)-regular if d2/C ≤ dH(v) ≤ Cd2 for all v ∈ V (H).

The edge density of a k-graph H with n vertices is ρ(H) = |H|/
(
n
k

)
. The bipartite incidence

graph GH of H is a bipartite graph with two parts V1 = E(H) and V2 = V (H), and for every

E ∈ E(H) and v ∈ V (H) the pair {E, v} is an edge in GH iff v ∈ E. Denote by AH the

adjacency matrix of GH.

Let n = |V (H)|, m = |H| and labelling the edges in H with E1, . . . , Em We say a family F

of hypergraphs fits H if F = {Gi : 1 ≤ i ≤ m} and Gi is a hypergraph with |V (Gi)| = |Ei| for

i ∈ [m].

Given a hypergraph H and a family F that fits H we let H(F) be the random hypergraph

obtained from H by taking independently for every i ∈ [m] a bijection ψi : Ei → V (Gi) and

letting a set S ⊂ Ei be an edge in H(F) if ψi(S) ∈ Gi.

Let τ ≥ 1 be an integer and denote by Bτ (G) the collection of τ -subsets of V (G) that are

not independent in G. Let bτ (G) = |Bτ (G)| and pτ (G) = bτ (G)/
(
v(G)
τ

)
. In other words, pτ (G)

is the probability that a random τ -subset of V (G) is not independent in G. For a family F of

hypergraphs define

pτ (F) = min {pτ (G) : G ∈ F} .

We extend the definition of CG(2, j) in Section 9.1.2 by letting CG(2, j) denote the number

of pairs of edges {E,E′} in a k-graph G with |E ∩ E′| = j for all 0 ≤ j ≤ k − 1.
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The following lemma gives an upper bound for the independence number of H(F).

Lemma 9.1.26. Let C, d1, d2 ≥ 1 be real numbers and k ≥ 2 be an integer. Suppose that H is

a hypergraph with n vertices, m edges, and is (C, d1)-uniform, (C, d2)-regular. Let F = {Gi :

i ∈ [m]} be a family of k-graphs that fits H. Suppose there exists λ ≥ 0 such that the bipartite

graph GH satisfies

∣∣∣∣eGH(X,Y )− d1

n
|X||Y |

∣∣∣∣ ≤ λ√|X||Y | (9.6)

for all X ⊂ V (H) and Y ⊂ E(H). Then, w.h.p. α (H(F)) ≤ 2τn/d1, if τ satisfies

pτ (F)

τ
≥ 8C2 log n

d2
and τ ≥ 8C2λ2

d2
. (9.7)

Proof. Let τ be a real number that satisfies Equation 9.7, V = V (H), and I ⊂ V be a set of

size 2τn/d1.

Let m = |H| and label the edges in H by {E1, . . . , Em}. Let mi = |Ei| for i ∈ [m]. Since

H is (C, d1)-uniform and (C, d2)-regular, we obtain d1|H|/C ≤
∑

v∈V dH(v) ≤ Cd1|H|, and

consequently,

md1/C
2 ≤ nd2 ≤ C2md1. (9.8)
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Define

E1 = {E ∈ H : |E ∩ I| < τ} , and E2 = {E ∈ H : |E ∩ I| > 3τ} .

Claim 9.1.27. |Ei| ≤ 2C2λ2m/d2τ ≤ m/4 for i = 1, 2.

Proof. It follows from Equation 9.6 that

∑
E∈E1

|E ∩ I| = eGH(I, E1) ≥ d1|I||E1|/n− λ (|I||E1|)1/2 ,

and by definition,
∑

E∈E1 |E ∩ I| < τ |E1|. Therefore,

τ |E1| > d1|I||E1|/n− λ (|I||E1|)1/2 .

Since |I| = 2τn/d1, we obtain

|E1| <

(
λ|I|1/2

d1|I|/n− τ

)2

=

(
λ|I|1/2

d1|I|/2n

)2

=
2λ2n

τd1
,

which together with Equation 9.8 implies |E1| < 2C2λ2m/d2τ . Notice that Equation 9.7 implies

that C2λ2/d2τ ≤ 1/8, so |E1| < m/4.

Now consider E2. Similarly, By Equation 9.6,

∑
E∈E2

|E ∩ I| = eGH(I, E2) ≤ d1|I||E1|/n+ λ (|I||E1|)1/2 ,
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and by definition,
∑

E∈E2 |E ∩ I| > 3τ |E2|. Therefore,

3τ |E2| < d1|I||E2|/n+ λ (|I||E2|)1/2 ,

Since |I| = 2τn/d1, we obtain

|E2| <

(
λ|I|1/2

3τ − d1|I|/n

)2

=

(
λ|I|1/2

d1|I|/2n

)2

=
2λ2n

τd1
≤ 2C2λ2m

τd2
≤ m

4
.

For i ∈ [m] let Ii = I ∩Ei. By Claim 9.1.27 the number of set Ii that satisfies τ ≤ |Ii| ≤ 3τ

(in fact, |Ii| ≥ τ is sufficient for the proof) is at least m − 2m/4 = m/2. By the definition of

pτ (F), for every Ii that satisfies τ ≤ |Ii| ≤ 3τ we have

P (ψi(Ii) is independent in Gi) ≤ 1− pτ (F).

Since, by definition, the bijections {ψi : i ∈ [m]} are mutually independent, the events

{ψi(Ii) is independent in Gi : i ∈ [m]}
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are mutually independent. Therefore,

P (I is independent in H(F)) ≤ P

 ∧
i∈[m]

ψi(Ii) is independent in Gi


=
∏
i∈[m]

P (ψi(Ii) is independent in Gi) ≤ (1− pτ (F))m/2 .

So the expected number of independent 2nτ/d1-sets in H(G) is at most

(1− pτ (F))m/2
(

n

2nτ/d1

)
< exp

(
−pτ (F)

m

2
+

2τn

d1
log

(
en

2nτ/d1

))
< exp

(
−pτ (F)

m

2
+

2C2τm

d2
log n

)
< exp

(
−pτ (F)

m

4

)
→ 0 as m→∞.

Therefore, α(H(F)) ≤ 2τn/d1 holds with high probability.

The following corollary may be a simpler form to use Lemma 9.1.26.

Corollary 9.1.28. Let C, d1, d2 ≥ 1 be real numbers and k ≥ 2 be an integer. Suppose that H

is a hypergraph with n vertices, m edges, and is (C, d1)-uniform, (C, d2)-regular. Let F = {Gi :

i ∈ [m]} be a family of k-graphs that fits H. Suppose there exists λ ≥ 0 such that the bipartite

graph GH satisfies Equation 9.6 for all X ⊂ V (H) and Y ⊂ E(H). Suppose further that

• there exists ρ > 0 such that ρ(Gi) ≥ ρ for i ∈ [m], and

• λ < (d2τ/8C
2)1/2, where τ = 2

(
16k!C2 log n/ρd2

)1/(k−1) � 1, and

• CGi(2, j) ≤ |Gi| (v(Gi)/3τ)k−j for 0 ≤ j ≤ k − 1 and i ∈ [m].
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Then, w.h.p. α (H(F)) ≤ 2τn/d1.

Proof. It suffices to show that τ = 2
(
16k!C2 log n/ρd2

)1/(k−1)
satisfies Equation 9.7. First let

us calculate pτ (F). Fix i ∈ [m] and for every edge set E ⊂ Gi let TE denote the collection of

τ -sets in V (Gi) containing the vertex set
⋃
E∈E E. By the definition of Bτ (Gi), we have

Bτ (Gi) =
⋃
E∈Gi

T{E}.

It follows from the Bonferroni inequalities [27] that

bτ (Gi) =

∣∣∣∣∣∣
⋃
E∈Gi

T{E}

∣∣∣∣∣∣ ≥
∑
E∈Gi

|T{E}| −
∑

{E,E′}∈(Gi2 )

|T{E,E′}|

= |Gi|
(
v(Gi)− k
τ − k

)
−
k−1∑
j=0

CGi(2, j) ·
(
v(Gi)− 2k + j

τ − 2k + j

)

Since CGi(2, j) ≤ |Gi| (v(Gi)/τ)k−j for 0 ≤ j ≤ k − 1, we obtain

k−1∑
j=0

CGi(2, j) ·
(
v(Gi)− 2k + j

τ − 2k + j

)
≤

k−1∑
j=0

|Gi|
(
v(Gi)

3τ

)k−j (v(Gi)− 2k + j

τ − 2k + j

)

=
k−1∑
j=0

|Gi|
(
v(Gi)

3τ

)k−j (τ − k)k−j
(v(Gi)− k)k−j

(
v(Gi)− k
τ − k

)

≤
k−1∑
j=0

|Gi|
(
v(Gi)

3τ

)k−j ( τ

v(Gi)

)k−j (v(Gi)− k
τ − k

)

≤ 1

2
|Gi|
(
v(Gi)− k
τ − k

)
.
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Therefore, bτ (Gi) ≥ 1
2 |Gi|

(v(Gi)−k
τ−k

)
. Consequently,

pτ (Gi) =
bτ (Gi)(
v(Gi)
τ

) ≥ 1

2

|Gi|
(v(Gi)−k

τ−k
)(

v(Gi)
τ

) =
1

2

|Gi|(v(Gi)
k

) (τ)k
k!

=
ρ(Gi)

2

(τ)k
k!
≥ ρ

2k!
(τ)k.

So we obtain

pτ (F)

τ
≥ ρ

2k!
(τ − 1)k−1 ≥

ρ

2k!

(τ
2

)k−1
≥ 8C2 log n

d2
.

On the other hand, our assumption on λ clearly implies τ ≥ 8C2λ/d2. Therefore, by Lem-

ma 9.1.26, w.h.p. α (H(F)) ≤ 2τn/d1.

We will also need the following result in our proof.

Lemma 9.1.29 ([149]). Let H be a d1-uniform d2-regular hypergraph on n vertices. Then for

every V ′ ⊂ V (H) and E ⊂ E(H),

∣∣∣∣∣∑
E∈E
|E ∩ V ′| − d1

n
|V ′||E|

∣∣∣∣∣ ≤ λ(GH)
√
|V ′||E|.

We also need the following Chernoff’s inequality (e.g. see Theorem 22.6 in [107]).
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Theorem 9.1.30 (Chernoff’s inequality). Suppose that Sn = X1 + · · ·+Xn where 0 ≤ Xi ≤ 1

for i ∈ [n] are independent random variables. Let µ = E[X1] + · · · + E[Xn]. Then for every

0 ≤ t ≤ µ,

P (|Sn − µ| ≥ t) ≤ e−
t2

3µ .

Now we are ready to prove the upper bound in Theorem 9.1.4.

Proof of the upper bound in Theorem 9.1.4. Let q be a prime power and G = G(q`, q2, 2, `) be

the bipartite graph on V1 ∪ V2 with |V1| = q` and |V2| = q2. Let G denote the hypergraph on

q2 vertices whose bipartite incident graph is G. Note that G is a q`−1-regular q-graph, and by

Lemmas 9.1.25 and 9.1.29,

∣∣∣∣∣∑
E∈E
|E ∩ V ′| − 1

q
|V ′||E|

∣∣∣∣∣ ≤ q(`−1)/2
√
|V ′||E| (9.9)

holds for all V ′ ⊂ V (G) and E ⊂ G.

Let U ⊂ V (G) be a random set such that every vertex in V (G) is included in U independently

with probability p = q−
2
`+1 . Then E[|U |] = pq2 = q

2`
`+1 , and by the Chernoff inequality,

P
(∣∣|U | − pq2

∣∣ > pq2/2
)
< e
−(pq2/2)

2

3pq2 = e−pq
2/12 → 0 as q →∞.
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For every E ∈ G we have E[|E ∩ U |] = pq = q
`−1
`+1 , and by the Chernoff inequality,

P (||E ∩ U | − pq| > pq/2) < e
− (pq/2)2

3pd1 = e−pq/12.

Let B denote the collection of edges E ∈ G such that ||E ∩ U | − pq| > pq/2. Then

E[|B|] ≤ q`e−pq/12 = q`e−q
`−1
`+1 /12 → 0 as q →∞.

Therefore, w.h.p. the set U satisfies that q
2`
`+1 /2 ≤ |U | ≤ 3q

2`
`+1 /2 and q

`−1
`+1 /2 ≤ |E ∩ U | ≤

3q
`−1
`+1 /2 for all E ∈ G.

Fix such a set U that satisfies the conclusion above, and let c ∈ [1/2, 3/2] be the real number

such that |U | = cq
2`
`+1 . Let n = |U | = cq

2`
`+1 , m = |G| = q`, d1 = q

`−1
`+1 , and d2 = q`−1. Let H be

the hypergraph on U with

H = {E ∩ U : E ∈ G}.

Since d1/2 ≤ |E ∩ U | ≤ 3d1/2 for all E ∈ G, the hypergraph H is a (2, d1)-uniform. Moreover,

for every pair of edges E,E′ ∈ G, since |E ∩ E′| < ` < d1/2, we have E ∩ U 6= E′ ∩ U . So,

dH(u) = dG(u) = d2 for all u ∈ U . In addition, Equation 9.9 also holds for all V ′ ⊂ U and

E ⊂ G.

Label the edges inH with {E1, . . . , Em} and letmi = |Ei| for i ∈ [m]. Let F = {Si : i ∈ [m]},

where Si is the k-graph on [mi] whose edge set is the collection of all k-subsets of [mi] that
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contain [`+ 1]. Our construction of the (n, k, `)-omitting system is simply H(k, `) = H(F), and

indeed, one can easily check that |e′ ∩ e′| 6= ` for all distinct edges e, e′ ∈ H(k, `).

Let τ = 100 (log n)1/`.

Claim 9.1.31. pτ (F) ≥
(

τ
3d1/2

)`+1
/2.

Proof. Fix i ∈ [m] and let I be a random τ -subset of [mi]. It is easy to see that I is not

independent in Si iff [`+ 1] ⊂ I. Since

P ([`+ 1] ⊂ I) =

(
mi−`−1
τ−`−1

)(
mi
τ

) =
τ · · · (τ − `)
mi · · · (mi − `)

≥ (1− o(1))

(
τ

mi

)`+1

>
1

2

(
τ

3di/2

)`+1

,

we obtain

pτ (F) >
1

2

(
τ

3di/2

)`+1

.

Observe that τ satisfies

pτ (F)

τ
>

(
τ

3d1/2

)`+1
/2

τ
=

100` log n

2(3/2)`+1d`+1
1

=
100`

2(3/2)`+1

log n

d2
>

32 log n

d2

(here we used the fact that d2 = d`+1
1 ) and

τ = 100(log n)1/` >
32
(
q(`−1)/2

)2
q`−1

.
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We may therefore apply Lemma 9.1.26 with C = 2 to obtain

α (H(k, `)) ≤ 2τn/d1 ≤ 400n
`+1
2` (log n)1/`.

9.1.4 Independent sets in (n, k, `, λ)-systems

In this section we prove Theorem 9.1.6. Our proof is a direct application of Theorem 9.1.13.

Proof of Theorem 9.1.6. Fix δ > 0, and let ε > 0 be sufficiently small such that `−1
k−2 − δ <

(`−1)(1−ε)
k−2+ε holds. Let t = λ

1
k−1n

`−1
k−1 and H be a (n, k, `, λ)-system, where 0 < λ < n

`−1
k−2
−δ.

Let j ∈ [`− 1] and S ⊂ V (H) be a set of size j. Since H is an (n, k, `, λ)-system, LH(S) is

an (n, k − j, `− j, λ)-system. Therefore,

∆(H) ≤ λ
(

n

`− 1

)
/

(
k − 1

`− 1

)
< tk−1, and

|∆j(H)| ≤ λ
(

n

`− j

)
/

(
k − j
`− j

)
= O(λn`−j) for 2 ≤ j ≤ `− 1.

It follows that

CH(2, j) = O
(
λn`−j |H|

)
= O

(
λ2n2`−j

)
≤ nt2k−j−1−ε for 2 ≤ j ≤ `− 1.
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On the other hand, for ` ≤ j′ ≤ k − 1 and a set S ⊂ V (H) of size j′ the link LH(S) has size at

most λ. Therefore,

CH(2, j′) = O (λ|H|) = O
(
λ2n`

)
≤ nt2k−j′−1−ε for ` ≤ j′ ≤ k − 1.

Therefore, by Theorem 9.1.13, α(H) = Ω
(

(log t)1/(k−1) n/t
)

= Ω
(
λ−

1
k−1n

k−`
k−1 (log n)

1
k−1

)
.

9.1.5 The Ramsey number of the k-Fan

In this section we prove Theorem 9.1.10. The lower bound (construction) is given by the so

called L-constructions. These were introduced in [44], where they were used to answer an old

Ramsey-type question of Ajtai–Erdős–Komlós–Szemerédi [3].

Let m,n ≥ 2 and let Lm,n be the k-graph with vertex set [m]× [n] and edge set

{{(x1, y1), (x1, y2), . . . , (xk−1, y2)} : x1 < · · · < xk−1, y1 > y2} .

Proposition 9.1.32. For every m,n ≥ 2 the hypergraph Lm,n is F k-free.

Proof. Suppose that Lm,n contains a copy of F k = {E1, . . . , Ek, E}. Let v =
⋂k
i=1Ei and

assume that v = (x0, y0), E = {(x1, y1), (x1, y2), . . . , (xk−1, y2)}, where x1 < · · · < xk−1 and

y1 > y2.

By the definition of F k, for every vertex u ∈ E, there exists an edge Ei that contains both

u and v. It is easy to see that if x′1 < x′2 and y′1 < y′2, then there is no edge in Lm,n containing

both (x′1, y
′
1) and (x′2, y

′
2). Therefore, we must have (see Figure 29)
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(1) x0 ≤ x1 and y0 ≥ y1, or

(2) x0 ≥ xk−1 and y0 ≤ y2, or

(3) x0 = x1 and y2 < y0 < y1, or

(4) y0 = y2 and x1 < x0 < xk−1.

If x0 ≤ x1 and y0 ≥ y1, then by the definition of Lm,n, there is a (k − 1)-set J ⊂ [k] such

that
⋂
j∈J Ej = (x0, y2), a contradiction. If x0 ≥ xk−1 and y0 ≤ y2, then by the definition of

Lm,n, there exist {i, j} ⊂ [k] such that Ei ∩ Ej = (x1, y0), a contradiction. Similarly, if Case

(3) or Case (4) happens, then there exist {i, j} ⊂ [k] such that Ei ∩ Ej = (x1, y2), which is a

contradiction.

x

y

E

(x1, y1)

(x1, y2)

(xk−1, y2)

[m]

[n]

Figure 29. Only vertices that lie in these two shaded areas and the L-shaped path that

connects these two areas can be adjacent to all vertices in E.
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The following result gives an upper bound for the independence number of Lm,n.

Proposition 9.1.33. The hypergraph Lm,n satisfies α(Lm,n) < m+ (k − 2)n.

Proof. Let I be an independent in Lm,n. Remove the topmost vertex of each column and the

k−2 rightmost vertices of each row in I. It is easy to see that we removed at most m+(k−2)n

vertices from I, and I has no vertex left since otherwise I would contain an edge in Lm,n.

Therefore, α(Lm,n) < m+ (k − 2)n.

Now we finish the proof of Theorem 9.1.10.

Proof of Theorem 9.1.10. First we prove the lower bound. Let m = b t2c and n = b t−1
2(k−2)c. By

Propositions 9.1.32 and 9.1.33, the k-graph Lm,n is F k-free and α(Lm,n) ≤ m + (k − 2)n < t.

So,

rk(F
k, t) > mn =

⌊
t

2

⌋⌊
t− 1

2(k − 2)

⌋
.

To prove the upper bound, let us show that rk(F
k, t) ≤ rk(S

k
t , t) first. Indeed, let H be a

k-graph on rk(S
k
t , t) vertices. We may assume that H does not contain an independent set of

size t. Then, there exist t distinct edges E1, . . . , Et and a vertex v in H such that Ei∩Ej = {v}

for 1 ≤ i < j ≤ t. Let S be a set that contains exactly one vertex from each Ei \ {v} for i ∈ [t].

Then S has size t and hence contains an edge in H, and it implies that H contains a copy of

F k. So rk(F
k, t) ≤ rk(Skt , t), and it follows from Theorem 9.1.9 that rk(F

k, t) ≤ t(t− 1) + 1.
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9.2 Explicit constructions of designs

9.2.1 Introduction

We start with the following definition.

Definition 9.2.1. For fixed integers r ≥ s ≥ 1 we say there is an explicitly construction of an

(n, r, s)-system with property P if there exists an algorithm A such that for every integer n as

input, A runs in time poly(n) and outputs an (n, r, s)-system with property P.

Explicit constructions of (n, r, s)-systems with certain properties are very useful in theoret-

ical computer science. For example, in the seminal work of Nisan and Wigderson [202], dense

(n, r, s)-systems are used to construct pseudorandom generators (PRGs) (see also [240; 213]

for more applications). More recently, explicit constructions of (n, r, s)-systems with small

independence number were used to construct extractors for adversarial sources [36; 35].

In this note, we focus on the explicit constructions of (n, r, s)-systems with small indepen-

dence number. Rödl and Šiňajová’s proof of the existence of an (n, r, s)-system with small

independence number uses the Lovász local lemma, and hence it does not provide an explicit

way to construct them. Perhaps the first explicit construction of an (n, 3, 2)-system (also called

a Steiner triple system) with independence number O(n1−ε) for some absolute constant ε > 0

is due to Chattopadhyay, Goodman, Goyal, and Li [36]. Their proof uses results about cap sets

(see [45; 55]).
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Theorem 9.2.2 (Chattopadhyay–Goodman–Goyal–Li [36]). There exists a constant C ≥ 1

such that for every integer n ≥ 3 there exists an explicit construction of an (n, 3, 2)-system with

independence number at most Cn0.9228.

Later, using results about linear codes [125; 29] and Sidorenko’s recent bounds on the size of

sets in Zn2 containing no r elements that sum to zero [229; 230], Chattopadhyay and Goodman

[35] extended Theorem 9.2.2 to all integers r > s ≥ 2 with s ≥ dr/2e.

Theorem 9.2.3 (Chattopadhyay–Goodman [35]). There exists a constant C ≥ 1 such that for

every integer s ≥ 2 and every even integer r > s there exists an explicit construction of an

(n, r, s)-system with independence number at most Cr4n
2(r−s)
r .

Remark. For odd r they showed that there exists an explicit construction of an (n, r, s)-

system with independence number at most C(r + 1)4n
2(r+1−s)
r+1 .

Our main results in this note extend Theorem 9.2.2 for certain values of r and s in the range

s < dr/2e which was not addressed by Theorem9.2.3.

Our proof of the first theorem below is based on a recent result about the maximum size of

a set in Zn6 that avoids 6-term arithmetic progressions [207].

Theorem 9.2.4. There exists a constant C > 0 such that for every integer r ∈ {4, 5, 6}

and every integer n ≥ r there exists an explicit construction of an (n, r, 2)-system H with

α(H) ≤ Cn0.973.

Using a lemma about the independence number of the product of two hypergraphs we are

able to extend Theorem 9.2.4 to a wider range of r and s.
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For every integer s = 3`14`25`36`4 + 1, where `1, `2, `3, `4 ≥ 0 are integers, define

R(s) =



6(s− 1) if `1 = `2 = `3 = 0

5(s− 1) if `1 = `2 = 0 and `3 6= 0

4(s− 1) if `1 = 0 and `2 6= 0

3(s− 1) if `1 6= 0

Theorem 9.2.5. For every integer s of the form 3`14`25`36`4+1, where `1, `2, `3, `4 ≥ 0 are inte-

gers, and every integer r satisfying 2s ≤ r ≤ R(s) there exist constants C = C(`1, `2, `3, `4), ε =

ε(`1, `2, `3, `4) > 0 such that for every integer n ≥ r there exists an explicit construction of an

(n, r, s)-system with independence number at most Cn1−ε.

The following result focusing on (n, 5, 4)-systems uses a different argument and it improves

the bound O(n2/3) given by Theorem 9.2.3.

Theorem 9.2.6. There exists a constant C > 0 such that for every integer n ≥ 5 there exists

an explicit construction of an (n, 5, 4)-systems with independence number at most Cnlog3 2 ≤

Cn0.631.

9.2.2 Proofs of Theorems 9.2.4 and 9.2.5

9.2.2.1 Proof of Theorems 9.2.4

Let us first introduce a construction of r-graphs based on r-term arithmetic progressions

(r-AP) over Zkr . We do not allow trivial progressions so an r-AP has r distinct elements.
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Construction A(r, k). Let r ≥ 3 and k ≥ 1 be integers. The hypergraph A(r, k) is the

r-graph with vertex set V = Zkr and edge set

{
{v1, . . . , vr} ∈

(
V

r

)
: v1, . . . , vr form an r-AP

}
.

Remarks.

• It is clear that A(r, k) can be constructed in time poly
(
rk
)

for all integers r, k ≥ 1.

• Even though we defined A(r, k) for all integers r ≥ 3, in the proof of Theorem 9.2.4 we

will consider only the case r = 6.

The following easy proposition shows that for every integer r ≥ 3 the hypergraph A(r, k) is

linear, i.e. every pair of edges has an intersection of size at most one.

Proposition 9.2.7. Let r ≥ 3, k ≥ 1 be integers and n = rk. Then A(r, k) is an (n, r, 2)-

system.

Proof. Suppose to the contrary that there exist two distinct edges E,E′ ∈ H such that |E∩E′| ≥

2. Assume that E = {a, a+ d, . . . , a+ (r− 1)d} for some a, d ∈ Zkr and d is not the zero vector.

Without loss of generality we may assume that a ∈ E∩E′ (otherwise we can choose an arbitrary

element in E ∩ E′ and rename it as a) and assume that E′ = {a, a+ id, . . . , a+ (r − 1)id} for

some integer i ∈ [r−1]. Since |E′| = r, the set {0, id (mod r), . . . , (r−1)id (mod r)} has size r.

Therefore, sets {0, id (mod r), . . . , (r− 1)id (mod r)} and {0, 1, . . . , r− 1} are identical, which

implies that E = E′, a contradiction. Therefore, A(r, k) is an (n, r, 2)-system.
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The next proposition shows that in order to prove Theorem 9.2.4 it suffices to find an explicit

construction of an (n, 6, 2)-system with independence number O(n1−ε).

Proposition 9.2.8. Suppose that there exists an (n, r, s)-system with independence number at

most α. Then there exists an (n, r′, s)-system with independence number at most α for every

integer r′ ∈ [s+ 1, r].

Proof. Let H be an (n, r, s)-system with independence number at most α. Let V = V (H). Fix

an integer r′ ∈ [s + 1, r]. Let the r′-graph H′ be obtained from H in the following way: for

every edge E ∈ H replace it by an arbitrary r′-set E′ ⊂ E. It is clear that H′ is an r′-graph

on V . Now suppose that S ⊂ V is a set of size strictly greater than α. Then, by assumption,

there exists an edge E ∈ H such that E ⊂ S. It follows from the definition of H′ that there

exists E′ ∈ H such that E′ ⊂ E ⊂ S. So, S is not an independent set in H′, which implies that

α(H′) ≤ α.

Another ingredient we need for the proof of Theorem 9.2.4 is the following result due to

Pach and Palincza [207].

Theorem 9.2.9 (Pach–Palincza [207]). Suppose that k is a sufficiently large integer. Then

every set of Zk6 of size greater than (5.709)k contains a 6-AP.

Now we are ready to prove Theorem 9.2.4.

Proof of Theorem 9.2.4. By Proposition 9.2.8, it suffices to prove that there exists an (n, 6, 2)-

system H with α(H) = O(n0.973).
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First, for all integers n of the form 6k we let the construction be H = A(6, k). It follows

from Proposition 9.2.7 that H is an (n, 6, 2)-system. On the other hand, it follows from the

definition of A(6, k) that a set S ⊂ V is independent in A(6, k) iff it does not contain a 6-AP.

So, by Theorem 9.2.9, |S| ≤ (5.709)k. Therefore, α(H) ≤ (5.709)k ≤ n0.973.

Now suppose that n is not of the form 6k. Then let k be the smallest integer such that

n ≤ 6k. Let H be any n-vertex induced subgraph of A(6, k). Then α(H) ≤ α(A(6, k)) ≤

(5.709)k ≤ 6n0.973.

9.2.2.2 Proof of Theorem 9.2.5

Given two hypergraphs H1 and H2, the direct product of H1 and H2, denoted by H1�H2,

is the hypergraph on V (H1)× V (H2) with edge set

{E1 × E2 : E1 ∈ H1 and E2 ∈ H2} ,

where × denotes the usual cartesian product of sets.

Remark. It is clear that there exists an algorithm A′ such that for every input (H1,H2), A′

runs in time poly (|H1| · |H2|) and outputs H1�H2.

One nice property of the operation defined above is that the direct product of two designs

is still a design.

Lemma 9.2.10. Suppose that H1 is an (n1, r1, s1)-system and H2 is an (n2, r2, s2)-system.

Then H1�H2 is an (n1n2, r1r2,max{r1(s2 − 1) + 1, r2(s1 − 1) + 1})-system.
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Proof. Let n = n1n2, r = r1r2, and s = max{r1(s2 − 1) + 1, r2(s1 − 1) + 1}. It is clear that

H1�H2 is an r-graph on n vertices. So it suffices to show that every s-set of V (H1) × V (H2)

is contained in at most one edge in H1�H2.

Fix an s-set S ⊂ V (H1) × V (H2). Suppose to the contrary that there exist two distinct

edges E,E′ ∈ H1�H2 such that S ⊂ E∩E′. Assume that E = E1×E2 and E′ = E′1×E′2, where

E1, E
′
1 ∈ H1, E2, E

′
2 ∈ H2, and (E1, E2) 6= (E′1, E

′
2). Since E ∩E′ = (E1 ∩E′1)× (E2 ∩E′2), we

have |E∩E′| = |E1∩E′1|×|E2∩E′2|. On the other hand, since (E1, E2) 6= (E′1, E
′
2), we have either

E1 6= E′1 or E2 6= E′2. In the former case we have |E∩E′| = |E1∩E′1|×|E2∩E′2| ≤ r2(s1−1) < s,

and in the latter case we have |E ∩E′| = |E1∩E′1|× |E2∩E′2| ≤ r1(s2−1) < s, both contradict

the assumption that S ⊂ E ∩ E′ and |S| = s.

Using Lemma 9.2.10 we obtain the following corollary.

Corollary 9.2.11. Let (`1, `2, `3, `4) ∈ N4, s = 3`14`25`36`4 + 1, m ∈ N, mi,j ∈ N for i ∈ [`j ]

and j ∈ [4], and M = m
∏4
j=1

∏`j
i=1mi,j. Suppose that Hi,j is an (mi,j , 3, 2)-system for i ∈ [`j ]

and j ∈ [4], and G = �4
j=1�

`j
i=1Hi,j. Then the following hold.

(1) Suppose that `1 6= 0 and H is an (m, 3, 2)-system, then H�G is an (M, 3(s−1), s)-system.

(2) Suppose that `1 = 0, `2 6= 0, and H is an (m, 4, 2)-system, then H�G is an (M, 4(s−1), s)-

system.

(3) Suppose that `1 = `2 = 0, `3 6= 0, and H is an (m, 5, 2)-system, then H�G is an (M, 4(s−

1), s)-system.



568

(4) Suppose that `1 = `2 = `3 = 0, `4 6= 0, and H is an (m, 6, 2)-system, then H�G is an

(M, 6(s− 1), s)-system.

The proof of Corollary 9.2.11 is just some simple but tedious calculations and we omit it

here. Corollary 9.2.11 explains the reason we define R(s) in the first section.

Next, we will show that the independence number of the direct product of two hypergraphs

with small independence number is still relatively small. To prove this we will use the following

bipartite version of the Dependent random choice lemma. Its proof is basically the same as

proofs in [87; 152; 8; 236], and for the sake of completeness we include it here.

For a graph G and a set T ⊂ V (G) we use N(T ) to denote the common neighbors of T in

G.

Lemma 9.2.12 (Dependent random choice, see [87; 152; 8; 236]). Let a,m, n1, n2, r be positive

integers and d1 ≥ 0 be a real number. Let G = G[V1, V2] be a bipartite graph with |V1| = n1,

|V2| = n2, and |G| ≥ d1n1. If there exists a positive integer t such that

n1d
t
1

nt2
−
(
n1

r

)(
m

n2

)t
≥ a.

Then there exists a subset U ⊂ V (G) of size at least a such that every set of r vertices in U

has at least m common neighbors.
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Proof. Pick a set T of t vertices from V2 uniformly at random with repetition. Set A = N(T ) ⊂

V1 and let X denote the cardinality of A. By the linearity of expectation,

E[X] =
∑
v∈V1

(
|N(v)|
n2

)t
= n−t2

∑
v∈V1

|N(v)|t ≥ n−t2 n1

(∑
v∈V1 |N(v)|

n1

)t
≥ n1d

t
1

nt2
.

Let Y be the random variable counting the number of subsets S ⊂ A of size r with fewer than

m common neighbors. For a given such subset S the probability that it is a subset of A equals(
|N(S)|
n2

)t
. Since there are at most

(
n1

r

)
subsets S ⊂ V1 of size r for which |N(S)| < m, it follows

that

E[Y ] ≤
(
n1

r

)(
m

n2

)t
.

By the linearity of expectation,

E[X − Y ] ≥ n1d
t
1

nt2
−
(
n1

r

)(
m

n2

)t
≥ a.

Hence there exists a choice of T for which the corresponding set A = N(T ) satisfies X−Y ≥ a.

Deleting one vertex from each subset S of A of size r with fewer than m common neighbors.

We let U be the remaining subset of A. The set U has at least X − Y ≥ a vertices and all

subsets of size r have at least m common neighbors.

The following lemma gives an upper bound for the independence number of the direct

product of two hypergraphs.
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Lemma 9.2.13. Suppose that H1 is an r1-graph on n1 vertices with α(H1) < n1/f(n1) and

H2 is an r2-graph on n2 vertices with α(H2) < n2/g(n2) for some real numbers f(n1), g(n2) ≥

1. Then H1�H2 is an r1r2-graph on n1n2 vertices with α(H1�H2) < n1n2/h(n1, n2), where

h(n1, n2) = (f(n1)/2)1/t and t =

⌈
log
(
n
r1−1
1 f(n1)/r1!

)
log g(n2)

⌉
.

Proof. Let f = f(n1), g = g(n2), t = d
log
(
n
r1−1
1 f/r1!

)
log g e, h = h(n1, n2) = (f/2)1/t, d1 = n2/h,

m = n2/g, and a = n1/f . Let S ⊂ V (H1)× V (H2) be a set of size d1n1 = n1n2/h. Define an

auxiliary bipartite graph G = G[V1, V2] with V1 = V (H1) and V2 = V (H2), and u ∈ V1, v ∈ V2

are adjacent iff (u, v) ∈ S. Since

n1d
t
1

nt2
−
(
n1

r1

)(
m

n2

)t
− a ≥ n1

ht
− nr11

r1!

1

gt
− n1

f

= n1

(
2

f
− nr1−1

1

r1!

1

gt
− 1

f

)
≥ n1

(
2

f
− 1

f
− 1

f

)
= 0,

it follows from Lemma 9.2.12 that there exists a set U ⊂ V1 of size n1/f such that every r1-

subset of U has at least n2/g common neighbors. Since α(H1) < n1/f , there exists an r1-subset

E1 ⊂ U such that E1 ∈ H1. Let W = N(E1). Since |W | ≥ n2/g > α(H2), there exists an

r2-subset E2 ⊂ W such that E2 ∈ H2. Since every pair {u, v} with u ∈ E1 and v ∈ E2 is an

edge in G, the set E1 × E2 is contained in S. This implies that S is not an independent set in

H1�H2 as it contains the edge E1 × E2 ∈ H1�H2. Therefore, α(H1�H2) < n1n2/h.

Now we are ready to prove Theorem 9.2.5. As indicated by Corollary 9.2.11 our con-

struction will be the direct product of some (mi, 3, 2)-systems, (mj , 4, 2)-systems, (mk, 5, 2)-

systems, and (m`, 6, 2)-systems depending on the value of `1, `2, `3, `4, where the choice of
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integers mi,mj ,mk,m` can be optimized so that the independence number of the resulting

construction is as small as possible. In the following proof we will use an inductive argument to

show that such construction has a small independence number. In order to keep the argument

simple, we will not try to optimize the choice of integers mi,mj ,mk,m`.

Proof of Theorem 9.2.5. We prove this theorem by induction on
∑

i∈[4] `i. Theorem 9.2.4

shows that the base case
∑

i∈[4] `i = 0 holds, so we may assume that
∑

i∈[4] `i ≥ 1. Let

s = 3`14`25`36`4 + 1, and let us assume, for the sake of simplicity, that `1 ≥ 1 (the other cases

can be proved using a similar argument). By Proposition 9.2.8 it suffices to show there is an

explicit construction of an (n,R(s), s)-system with independence number O(n1−ε).

Fix n and let m = d
√
ne, s1 = 3`1−14`25`36`4 + 1, r1 = 3(s1 − 1). By the induction

hypothesis, there exists an explicit construction H1 of an (m, r1, s1)-system with α(H1) ≤

C1m
1−ε1 , where C1 > 0 and ε1 > 0 are constants only related to r1 and s1. On the other hand,

by Theorem 9.2.4, there exists an explicit construction H2 of an (m, 3, 2)-system with α(H2) ≤

C2m
1−ε2 , where C2 > 0 and ε2 > 0 are absolute constants. Let C = C(C1, C2, ε1, ε2) > 0 be a

sufficiently large constant, ε = ε(C1, C2, ε1, ε2) > 0 be a sufficiently small constant (C and ε can

be determined from the proof below), and let H3 = H1�H2. Then by Lemma 9.2.10, H3 is an

(m2, 3(s− 1), s)-system. Applying Lemma 9.2.13 to H3 with f(m) = mε1/C1, g(m) = mε2/C2

we obtain t = d log(r1!C1)
logC2

r1−1+ε1
ε2
e, h(m,m) = (mε1/2C1)1/t, and α(H3) ≤ m2/h(m,m) ≤ Cn1−ε

(we can choose C > 0 to be sufficiently large and ε > 0 to be sufficiently small such that

the last inequality holds for all integers n). Finally, to obtain an explicit construction of an
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(n, 3(s − 1), s)-system with independent number at most Cn1−ε one just needs to take any

n-vertex induced subgraph of H3.

Remark. As we mentioned before, one could change the number of vertices in each design in the

proof above to get a better bound. For example, for (`1, `2, `3, `4) = (2, 0, 0, 0), Theorem 9.2.2

with our proof above gives an (n, 27, 10)-design with independence number O(n1−ε), where

ε ≈ 6.8732 × 10−6. On the other hand, if we take the direct production of three copies of

(dn1/3e, 3, 2)-systems with independence number O(n1/3∗0.9228), we obtain an (n, 27, 10)-design

with independence number O(n1−ε′), where ε′ ≈ 3.5396× 10−5.

9.2.3 (n, 5, 4)-systems

We prove Theorem 9.2.6 in this section. We will show how to construct an (n, 5, 4)-system

with small independence number inductively. More specifically, assuming that we have an

(m, 5, 4)-system H with small independence number. Then we will construct a (3m, 5, 4)-system

H′ with small independence number by first taking three disjoint copies of H, then embedding

the vertex set of each copy of H into some finite field, and finally adding some crossing edges

that satisfy certain equation. The set of crossing edges we add will be sparse enough to make

sure the resulting construction is a (3m, 5, 4)-system, and it will also be dense enough to make

sure the resulting construction has small independence number.

Proof of Theorem 9.2.6. We will show that it suffices to choose C = 21. Similar to the proof of

Theorem 9.2.4 it suffices to show an explicit construction of an (n, 5, 4)-system with indepen-
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Hk Hk Hk

F2` F2` F2`

a1 b1
a2 b2 c

Figure 30. The induction step for constructing Hk+1 using Hk.

dence number at most 7nlog3 2 −
√

2
2−
√

3
n1/2 (this is slightly stronger that what we need) for all

integers n of the form 3k, and we will prove it by induction on k.

For k ≤ 3 we have 7
(
3k
)log3 2 −

√
2

2−
√

3
3k/2 ≥ 3k, so we may assume that k ≥ 4 and focus on

the induction step. Fix an integer k and let Hk be a (3k, 5, 4)-system with α(Hk) ≤ 7
(
3k
)log3 2−

√
2

2−
√

3
3k/2 = 7 · 2k −

√
2

2−
√

3
3k/2. Let ` ∈ N such that 2` ≥ 3k > 2`−1. Let U1, U2, U3 be three

pairwise disjoint copies of F2` \ {0}, where F2`
1 is the finite field of order 2` with characteristic

1 It is clear that F2` can be constructed in time poly(2`) for every integer ` ≥ 1.
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2. For i ∈ [3] let ψi : V (Hk) → Ui be an injection and let Vi = ψi(V (Hk)). Let Hk+1 be the

5-graph on V = V1 ∪ V2 ∪ V3 whose edge set is (see Figure 30)

Hk+1 =

{
{a1, b1, a2, b2, c} ∈

(
V

5

)
: a1, b1 ∈ V1, a2, b2 ∈ V2, c ∈ V3, a1 + b1 · c = a2 + b2 · c

}

∪

⋃
i∈[3]

ψi (Hk)

 .

Claim 9.2.14. Hk+1 is a (3k+1, 5, 4)-system.

Proof. Let S = {a, b, c, d} ⊂ V1 ∪ V2 ∪ V3 be a set of size 4. It is clear that if |S ∩ Vi| ≥ 3 for

some i ∈ [3] or |S ∩ V3| ≥ 2, then S can be contained in at most one edge of Hk+1. So we may

assume that |S ∩ V1|, |S ∩ V2| ≤ 2 and |S ∩ V3| ≤ 1.

Suppose that |S ∩ V1| = |S ∩ V2| = 2, and without loss of generality we may assume that

S∩V1 = {a, b} and S∩V2 = {c, d}. By the definition of Hk+1, every vertex e ∈ V3 that satisfies

{a, b, c, d, e} ∈ Hk+1 must satisfy a+ c · e = b+ d · e or a+ d · e = d+ c · e. Since both equations

yield e = a+b
c+d (here we used the fact that x− y = x+ y holds for all x, y ∈ F2`), such vertex e

is unique. Therefore, S is contained in at most one edge in Hk+1.

Suppose that |S ∩ V1| = 2 and |S ∩ V2| = |S ∩ V3| = 1. Without loss of generality we may

assume that S ∩V1 = {a, b}, S ∩V2 = {c}, and S ∩V3 = {d}. It is easy to see that every vertex

e ∈ V that satisfies {a, b, c, d, e} ∈ Hk+1 must satisfy

• e ∈ V2, and

• a+ c · d = b+ e · d or a+ e · d = b+ c · d.
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Since both a + c · d = b + e · d and a + e · d = b + c · d imply e = a+b
d + c (here we used the

fact that x− y = x+ y holds for all x, y ∈ F2` again), such vertex e is unique. Therefore, S is

contained in at most one edge in Hk+1.

By symmetry, for the other cases one can show that S is contained in at most one edge in

Hk+1. Therefore, Hk+1 is a (3k+1, 5, 4)-system.

Claim 9.2.15. α(Hk+1) ≤ 2
(

7 · 2k −
√

2
2−
√

3
3k/2

)
+
√

2 · 3k/2.

Proof. Suppose to the contrary that there exists an independent set S ⊂ V of size greater than

2
(

7 · 2k −
√

2
2−
√

3
3k/2

)
+
√

2·3k/2. Let Si = S∩Vi and si = |Si| for i ∈ [3]. Since S is independent

in Hk+1, Si must be independent in ψi(Hk). Therefore, si ≤ α(Hk) ≤ 7·2k−
√

2
2−
√

3
3k/2 for i ∈ [3]

and consequently, si >
√

2·3k/2 for i ∈ [3]. Moreover, we have s1+s2 > 7·2k−
√

2
2−
√

3
3k/2+

√
2·3k/2

and hence,

s1 · s2 >

(
7 · 2k −

√
2

2−
√

3
3k/2

)
·
√

2 · 3k/2 ≥
√

2

(
7−

√
2

2−
√

3

)
· 2k · 3k/2 ≥ 2 · 3k ≥ 2`.

Fix z ∈ S3. Since s1s2 > 2`, by the Pigeonhole principle, there exists distinct elements

(a1, b1), (a2, b2) ∈ S1 × S2 such that a1 + b1 · z = a2 + b2 · z. It is easy to see that a1 6= a2 and

b1 6= b2 since otherwise the equation a1 + b1 · z = a2 + b2 · z would imply (a1, b1) = (a2, b2), a

contradiction. Therefore, |{a1, a2, b1, b2, z}| = 5 and hence, {a1, a2, b1, b2, z} ∈ Hk+1. However,

this implies that S contains an edge in Hk+1, a contradiction.
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Remark. We may assume that α(Hk) =
⌈
7 · 2k −

√
2

2−
√

3
3k/2

⌉
by removing some edges from Hk

if necessary. If we let n = 3k+1 and use f(3k) to denote the independence number of Hk for

k ∈ N. Then Claim 9.2.15 can be written as

f(n) ≤ 2f(n/3) +
√

2/3
√
n.

By the master theorem, we have f(n) = O(nlog3 2). This explains the log3 2 in the exponent.

Claim 9.2.15 shows that

α(Hk+1) ≤ 2

(
7 · 2k −

√
2

2−
√

3
3k/2

)
+
√

2 · 3k/2 = 7 · 2k+1 −
√

2

2−
√

3
3(k+1)/2.

This completes the proof of the induction step.

Notice that given Hk the r-graph Hk+1 can be constructed in time poly(|Hk|) + poly(2`) =

poly(3k). So for every integer k ≥ 1 the r-graph Hk can be constructed in time poly(3k).
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.1 Proofs of lemmas in Section 6.1.2

Proof of Lemma 6.1.12. Fix M ≥ max{r, v} such that EX(M,Hev) ≤ (Π(Hev) + a/2)
(
M
r

)
. Then

there must be at least (a/2)
(
n
M

)
M -sets S ⊂ V (G) inducing an r-graph G[S] with e(G[S]) >

(Π(Hev) + a/2)
(
M
r

)
. Otherwise, we would have

∑
S∈(V (G)

M )

e(G[S]) ≤
(
n

M

)(
Π(Hev) +

a

2

)(M
r

)
+
a

2

(
n

M

)(
M

r

)
= (Π(Hev) + a)

(
n

M

)(
M

r

)
.

However, we also have

∑
S∈(V (G)

M )

e(G[S]) =

(
n− r
M − r

)
e(G) >

(
n− r
M − r

)
(Π(Hev) + a)

(
n

r

)
= (Π(Hev) + a)

(
n

M

)(
M

r

)
,

a contradiction. By the choice of M , every M -set S of V (G) contains a copy of an element in

Hev. So the number of copies of elements in Hev is at least
a/2( nM)
( n−vM−v)

= a/2

(Mv )

(
n
v

)
. So b is at least

(a/2)/
(
M
v

)
.

Proof of Lemma 6.1.15. Let t be the number of (k − 2)-sets T ⊂ [n]− x satisfying

dF(x)(T ) ≥ n− k + 1−
(
k2/c+ 2k

)
m(

n−1
k−2

) .
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Then

(k − 1)|F(x)| =
∑

T ′∈([n]−xk−2 )

dF(x)(T
′)

≤ t(n− k + 1) +

((
n− 1

k − 2

)
− t
)(

n− k + 1−
(
k2/c+ 2k

)
m(

n−1
k−2

) )
,

which implies that

(
k2/c+ 2k

)
m(

n−1
k−2

) t ≥ (k − 1)|F(x)| −
(
n− 1

k − 2

)(
n− k + 1−

(
k2/c+ 2k

)
m(

n−1
k−2

) )

≥ (k − 1)

((
n− k − 1

k − 1

)
−m

)
−
(
n− 1

k − 2

)(
n− k + 1−

(
k2/c+ 2k

)
m(

n−1
k−2

) )

= (k − 1)

((
n− k − 1

k − 1

)
−
(
n− 1

k − 1

))
+
(
k2/c+ 2k − k + 1

)
m

≥
(
k2/c+ k + 1

)
m− (k − 1)(k + 1)

(
n− k − 1

k − 2

)
≥ km.

Here we used the fact that
(
n−1
k−1

)
−
(
n−k−1
k−1

)
≤ (k+ 1)

(
n−k−1
k−2

)
holds for sufficiently large n, and

m ≥ c
(
n−1
k−2

)
. From the inequality above, we obtain

t ≥ k

k2/c+ 2k

(
n− 1

k − 2

)
=

1

k/c+ 2

(
n− 1

k − 2

)
.

Now let us consider the family of all (k−2)-sets described above, and let T1, ..., T` be a maximum

matching in this family. Since any other set has non-empty intersection with
⋃
i∈[`] Ti, we have

t ≤ `(k − 2)
(
n−1
k−3

)
. So we obtain ` ≥ 1

(k−2)(k/c+2)

(
n−1
k−2

)
/
(
n−1
k−3

)
. When n is sufficiently large, we

have ` ≥ 3, and this completes the proof.
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Proof of Lemma 6.1.16. By Lemma 6.1.15, there exist three disjoint (k − 2)-sets S1, S2, S3 ⊂

[n]− x such that for each i we have

dF(x)(Si) ≥ n− k + 1−
(
k2/c+ 2k

)
m(

n−1
k−2

) .

Therefore, for each i we have

|{y ∈ [n] : {x, y} ∪ Si 6∈ F}| < k +

(
k2/c+ 2k

)
m(

n−1
k−2

) .

Let B = {y ∈ [n] : {x, y} ∪ Si 6∈ F for some i ∈ [3]}. Then, we have |B| ≤ 3k+
(3k2/c+6k)m

(n−1
k−2)

. By

adding vertices into B, we may assume that

|B| = 3k +

(
3k2/c+ 6k

)
m(

n−1
k−2

) .

Since m ≥ c
(
n−1
k−2

)
holds for some constant c > 0, we have

|B| = 3k +

(
3k2/c+ 6k

)
m(

n−1
k−2

) ≤
(
6k2/c+ 6k

)
m(

n−1
k−2

)
≤
(
6k2/c+ 6k

)
δ
(
n−1
k−1

)(
n−1
k−2

) ≤
(
6k2/c+ 6k

)
δn ≤ n− 1

2
.

For each i ∈ {0, 1, . . . , k} define

Ti = {T ∈ F(x̄) : |T ∩B| = i}.
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Note that
⋃k
i=0 Ti is a partition of F(x̄). First we show that T0 = T1 = T2 = ∅. Our first

observation is that by definition Si ⊂ B for all i ∈ [3]. If S ∈ T0 ∪T1 ∪T2, then there is an i for

which Si∩S = ∅. Choose d−2 ≤ k−2 elements y1, . . . , yd−2 ∈ S\B and y ∈ [n]−x−B−S. Now

the d−2 sets {x, yj}∪Si for j ∈ [d−2], together with S and {x, y}∪Si form a d-cluster in F , a

contradiction. Therefore, T0 = T1 = T2 = ∅. So, we have F(x̄) =
⋃k
i=3 Ti. We may assume that

|Tp| ≥ m/(k−2) holds for some 3 ≤ p ≤ k. Applying Lemma 2.4 with U1 = B,U2 = [n]−x−B

and u1 = |U1|, u2 = |U2|, we obtain

m

k − 2
≤ |Tp| ≤ kup−1

1 uk−p2 ≤ k

((
6k2/c+ 6k

)
m(

n−1
k−2

) )p−1

nk−p.

Simplifying the inequality above, we obtain

mp−2 ≥
(
n−1
k−2

)p−1

(k − 2)k (6k2/c+ 6k)p−1 nk−p
.

Since m ≤ δ
(
n−1
k−1

)
≤ δn

(
n−1
k−2

)
, we know that

δ ≥ δp−2 ≥ mp−2

np−2
(
n−1
k−2

)p−2 ≥
(
n−1
k−2

)
(k − 2)k (6k2/c+ 6k)p−1 nk−2

≥
(
n−k
n

)k−2

(k − 2)!(k − 2)k (6k2/c+ 6k)p−1 ≥
1

2(k − 2)!(k − 2)k (6k2/c+ 6k)p−1

holds for sufficiently large n.

Now choose δ > 0 to be sufficiently small such that δ < 1
2(k−2)!(k−2)k(6k2/c+6k)p−1 . Then we

get a contradiction, and this completes the proof.
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.2 Validity of constructions in Section 6.1

It is easy to see that ν(Li) = ν + 1 holds for every i ∈ [5]. So, it suffices to show that the

families Li are d-cluster-free.

Claim .2.1. The family L1 is 3-cluster-free and ν(L1) = ν + 1.

Proof. Suppose there exist three sets L1, L2, L3 ∈ L1 that form a 3-cluster. Since L1∩L2∩L3 =

∅, one of these three sets must be Ci for some i, and we may assume that L1 = C1. On the other

hand, since |L1∪L2∪L3| ≤ 2k, the two sets L2 and L3 must both contain y, and L2∩J, L3∩J

must be both contained in P1. However, in this case, we would have v1 ∈ L1 ∩ L2 ∩ L3, a

contradiction. Therefore, the family L1 is 3-cluster-free.

Claim .2.2. The family L2 is 3-cluster-free and ν(L2) = ν + 1.

Proof. Suppose there exist three sets L1, L2, L3 ∈ L1 that form a 3-cluster. Similar to the proof

of Claim B.1, we may assume that L1 = C1. Since |L1 ∩ L2 ∩ L3| ≤ 2k, we know that L2 ∩ J

and L3 ∩ J must be both nonempty. For every i ∈ {2, 3} let L2(i) = {L ∈ L2 : |L ∩ J | = i}.

From the proof of Claim .2.1, we know that L2 and L3 cannot be both in L2(2).

If L2 ∈ L2(2) and L3 ∈ L2(3), then we would have |L2 ∩ L3| ≤ k − 3 and this implies

|L1 ∪ L2 ∪ L3| = 3k − (|L1 ∩ L2|+ |L1 ∩ L3|+ |L2 ∩ L3|) ≥ 2k + 1, a contradiction.

So we may assume that L2, L3 are both contained in L2(3). Let I2 = L2∩J and I3 = L3∩J .

By the definition of L2, we have |I2 ∩ I3| ≤ 1. Note that at least one of L1 ∩ I2, L1 ∩ I3, I2 ∩ I3

must be the empty set, since otherwise we would have L1 ∩ L2 ∩ L3 6= ∅, a contradiction.
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Therefore, we have |L1 ∩ L2|+ |L1 ∩ L3|+ |L2 ∩ L3| ≤ k − 3 + 2 = k − 1, and this implies that

|L1 ∪ L2 ∪ L3| ≥ 2k + 1, a contradiction. Therefore, the family L2 is 3-cluster-free.

Claim .2.3. The family L3 is 4-cluster-free and ν(L3) = 2.

Proof. Suppose there exist four sets L1, L2, L3, L4 ∈ L that form a 4-cluster. Similar to the

proof of Claim .2.1, we may assume that L1 = C1. Since |L1 ∪ · · · ∪ L4| ≤ 2k, there are at

least two sets in {L2, L3, L4} containing v. We may assume that v ∈ L2 and v ∈ L3. Let

E2 = L2 ∩W and E3 = L3 ∩W , and note that E2, E3 ∈ G. Since G is P k−2
2 -free, we have

|E2 ∪ E3| ≥ k, but this contradicts our assumption that |L1 ∪ · · · ∪ L4| ≤ 2k. Therefore, the

family L3 is 4-cluster-free.

Claim .2.4. The family L4 is 4-cluster-free and ν(L4) = ν + 1.

Proof. Suppose there exist four sets L1, L2, L3, L4 ∈ L4 that form a 4-cluster. Similar to the

proof of Claim .2.1, we may assume that L1 = C1. Since |L1∪L2∪L3∪L4| ≤ 2k, the three sets

L2, L3, L4 must all contain y and all have nonempty intersection with J . For every i ∈ {2, 3, 4}

let Ei = Li ∩ J and let Si = Li ∩W . The inequality |L1 ∪ L2 ∪ L3 ∪ L4| ≤ 2k implies that

|S2 ∪ S3 ∪ S4| ≤ k − 2.

Suppose that |S2∪S3∪S4| = k−2. Then, the inequality |L1∪L2∪L3∪L4| ≤ 2k implies that

E2 = E3 = E4, and Ei ∩ C1 6= ∅ holds for every i ∈ {2, 3, 4}. However, in this case, we would

have L1∩L2∩L3∩L4 6= ∅, a contradiction. Therefore, we may assume that S2 = S3 = S4. Since

|L1 ∪L2 ∪L3 ∪L4| ≤ 2k, at least two sets in {E2, E3, E4} have nonempty intersection with C1,

and we may assume that E2∩C1 6= ∅ and E3∩C1 6= ∅. Now we already have |L1∪L2∪L3| = 2k,
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therefore, the set E4 must be contained in E2 ∪ E3 ∪ C1. However, by the definition of G, this

is impossible. Therefore, the family L4 is 4-cluster-free.

Claim .2.5. The family L5 is d-cluster-free and ν(L5) = ν + 1.

Proof. Suppose there exist d sets L1, ..., Ld ∈ L5 that form a d-cluster. Similar to the proof

of Claim .2.1, we may assume that L1 = C1. For every i ∈ {2, . . . , d}, let Si = Li ∩W and

Ti = Li ∩ J , and note that some of the Ti’s may be empty. The inequality |L1 ∪ · · · ∪ Ld| ≤ 2k

implies that the d−1 sets L2, . . . , Ld all contains y, and |S2∪. . .∪Sd| ≤ k−1. Let S = S2∪· · ·∪Sd.

If S is of size k − 1, then Ti ⊂ C1 holds for every i ∈ {2, . . . , d}. Since at most one set

in {T2, . . . , Td} is empty, the set S contains at least d − 2 edges of G1 and, hence, we have

G1[S] ∈ Hd−2
k−1, a contradiction. Therefore, we may assume that S2 = · · · = Sd. Note that S is of

size k− 2 and every Ti is nonempty. Since |L1 ∪ · · · ∪Ld| ≤ 2k, at most one set in {T2, . . . , Td}

is not contained in C1. This implies that at least d− 2 sets in {T2, . . . , Td} are contained in C1.

However, this implies that S is an edge in G1 with multiplicity at least d − 2, a contradiction.

Therefore, the family L5 is d-cluster-free.
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.3 Proof of Theorem 7.1.16

In this section we prove Theorem 7.1.16. We need the following lemmas.

Lemma .3.1 ([65]). Let 0 < α ≤ 1 and let G be a triangle-free graph on αn vertices with at

least (2α− 1)n2/4 edges. Then G contains a matching with at least (2α− 1)n/2 edges.

Lemma .3.2. Let 1/2 ≤ α ≤ 1, n ∈ N and αn ∈ N. Let G be bipartite graph on n vertices. If

every vertex set of size αn in G spans at least (2α− 1)n2/4 edges, then G ∼= T2(n).

Proof. Let V1 ∪ V2 = V (G) be a partition such that G is a bipartite graph with parts V1 and

V2. Let x = |V1|/n and we may assume that x ≥ 1/2. By assumption, x < α, since otherwise

there would be a subset of A of size αn that spans zero edges. Now choose an arbitrary set

S ⊂ B with |S| = (α−x)n. Then |A∪B| = αn and e(A∪S) ≤ x(α−x)n2 ≤ (2α− 1)n2/4. By

assumption the inequality above must be tight, which means x = 1/2 and G[A,S] is a complete

bipartite graph. Since S was chosen randomly, G must be a complete bipartite graph with

|V1| = n/2. Therefore, G ∼= T2(n).

Now we prove Theorem 7.1.16.

Proof of Theorem 7.1.16. First one could see from Kriveleich’s proof (i.e. the proof of Theorem

4) in [153] that if G does not contain an independent set of size (1 − α)n, then there exists a

vertex set of size αn in G that spans strictly less than 2α−1
4 n2 edges. So by assumption there

exists an independent set in G whose size is (1− α)n. Next, we use the argument of Erdős et

al. [65] to show that G ∼= T2(n).
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Let A ⊂ V (G) be an independent set of size (1−α)n. By Lemma .3.1, there exists a matching

M in G[V (G) \A] with (2α− 1)n/2 edges. Let C = V (M) and let B = V (G) \ (A ∪ C). Note

that |C| = (2α− 1)n.

Since G is triangle-free and M is a matching, every vertex in A is adjacent to at most half

of the vertices in C. Therefore, e(A,C) ≤ (1− α)(2α− 1)n2/2 and hence

e(A ∪ C) = e(A,C) + e(C) ≤ (1− α)(2α− 1)n2

2
+

(2α− 1)2n2

4
=

2α− 1

4
n2.

Since |A ∪ C| = αn, by assumption, e(A ∪ C) ≥ (2α − 1)n2/4. So all inequalities above must

be tight, which means G[C] is a balanced complete bipartite graph. and every vertex in A is

adjacent to exactly half of the vertices in C.

Let C1 ∪ C2 = C be a partition such that G[C] = G[C1, C2] and note that |C1| = |C2| =

|C|/2 = (2α− 1)n/2. For i ∈ {1, 2} let

Ai = {u ∈ A : ∃v ∈ Ci, uv ∈ E(G)} and Bi = {u ∈ B : ∃v ∈ Ci, uv ∈ E(G)},

and let B3 = B \ (B1 ∪ B2). Since G[C1, C2] is a complete bipartite graph and every v ∈ A is

adjacent to at least half vertices in C1 ∪ C2, we have uw ∈ E(G) for all u ∈ Ai and w ∈ Ci for

i ∈ {1, 2}. Notice that A1 ∪ A2 is a partition of A, and for i ∈ {1, 2} we have uv 6∈ E(G) for

all u ∈ Bi, v ∈ Ai, since otherwise there exists w ∈ C1 such that u, v, w induces a copy of K3 in

G, a contradiction. Therefore, if B3 = ∅, then G is bipartite with two parts V1 = C1 ∪A2 ∪B2

and V2 = C2 ∪A1 ∪B1, and by Lemma .3.2, G ∼= T2(n). So we may assume that B3 6= ∅.
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Let Ĉ1 = C1 ∪ B2 and Ĉ2 = C2 ∪ B1. Let xi = |Ai|/n, yi = |Ĉi|/n for i ∈ {1, 2},

and z = |B3|/n. Since |Ĉ1 ∪ Ĉ2 ∪ A1 ∪ B3| = n − |A2| ≥ αn , there exists U1 ⊂ Ĉ1 with

|U1| = αn−|B3∪A1∪ Ĉ2| = (α− z−x1− y2)n. Since |B3∪A1∪ Ĉ2∪U1| = αn, by assumption

2α− 1

4
n2 ≤ e(B3 ∪A1 ∪ Ĉ2 ∪ U1) ≤ zx1n

2 + (x1 + y2)(α− z − x1 − y2)n2.

Similarly, there exists U2 ⊂ Ĉ2 with |U2| = (α− z − x2 − y2)n, and

2α− 1

4
n2 ≤ e(B3 ∪A2 ∪ Ĉ1 ∪ U2) ≤ zx2n

2 + (x2 + y1)(α− z − x2 − y1)n2.

Adding up these two inequalities we obtain

2α− 1

2
≤ zx1 + (x1 + y2)(α− z − x1 − y2) + zx2 + (x2 + y1)(α− z − x2 − y1)

= α(x1 + x2 + y1 + y2)− z(y1 + y2)−
(
(x1 + y2)2 + (x2 + y1)2

)
≤ α(1− z)− z(α− z)− (x1 + x2 + y1 + y2)2

2

= α(1− z)− z(α− z)− (1− z)2

2
=
z2

2
− (2a− 1)z +

2α− 1

2
,

which implies that z2/2− (2a− 1)z ≥ 0. However, since 0 < z ≤ 1− α < 4α− 2 (here we used

α > 3/5 and B3 6= ∅),

z2

2
− (2a− 1)z =

z

2
(z − (4α− 2)) < 0,
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a contradiction.

.4 Proofs of Claims 7.1.21 and 7.1.22

In this section we prove Claims 7.1.21 and 7.1.22.

Proof of Claim 7.1.21. Since x2
2 + x2

3 ≥ (x2 + x3)2/2, it suffices to show

(x2 + x3)2/2 + x2
4

9x1(1− 2x1)
− x2

4

6x1
+

1

6
− c > 0.

Plugging x4 = 1− g(c) and x2 + x3 = g(c)− x1 into the inequality above, it becomes

`(c, x1) :=
(g(c)− x1)2 + 2(1− g(c))2

18x1(1− 2x1)
− (1− g(c))2

6x1
+

1

6
− c > 0. (.10)

Then with the aid of computer [183] one can see that

min {`(c, x) : x ∈ (0, 1/2), c ∈ [1/4, 1/3]} > 0.003.

Therefore, Equation .10 is true.

Proof of Claim 7.1.22. First since 1/(1/2− x) is convex, by Jensen’s inequality

x4

1/2− x1
+

x4

1/2− x2
≥ 4x4

1− (x1 + x2)
.
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Since x1 + x2 ≥ 1/2 and x2 ≤ x1 < 1/2,

x2

1/2− x1
+

x1

1/2− x2
− 2(x1 + x2)

1− (x1 + x2)
=

2(x1 − x2)2(2x1 + 2x2 − 1)

(1− 2x1)(1− 2x2)(1− x1 − x2)
≥ 0.

It suffice to show that

c+
(1− x1 − x2)x4

6(x1 + x2)
<

1

18

((
1 +

1

1− 2x3
− 1

x1 + x2

)
· x1 + x2

1− (x1 + x2)

+
1

1− 2x3
+

1

2(x1 + x2)
· 4x4

1− (x1 + x2)
+ 1

)
,

Let x = x1 + x2. Then x3 = g(c)− x and the inequality above can be simplified as

m(x, c) :=

(
1 +

1

1− 2(g(c)− x)
− 1

x

)
· x

1− x

+
1

1− 2(g(c)− x)
+

2(1− g(c))

x(1− x)
+ 1− 3(1− x)(1− g(c))

x
− 18c > 0. (.11)

Then with the aid of computer [183] one can see that

min {m(x, c) : x ∈ [1/2, 1], c ∈ [1/4, 1/3]} > 0.099.

Therefore, Equation .11 is true.
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s. In A tribute to Paul Erdős, pages 111–120. Cambridge Univ. Press, Cambridge,
1990.
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67. P. Erdős, E. Győri, and M. Simonovits. How many edges should be deleted to make
a triangle-free graph bipartite? In Sets, graphs and numbers (Budapest, 1991),
volume 60 of Colloq. Math. Soc. János Bolyai, pages 239–263. North-Holland,
Amsterdam, 1992.
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105. P. Frankl and V. Rödl. Hypergraphs do not jump. Combinatorica, 4:149–159, 1984.

106. P. Frankl and N. Tokushige. Some best possible inequalities concerning cross-intersecting
families. J. Combin. Theory Ser. A, 61(1):87–97, 1992.
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113. Z. Füredi and M. Simonovits. Triple systems not containing a Fano configuration. Combin.
Probab. Comput., 14(4):467–484, 2005.

114. R. Glebov, A. Grzesik, P. Hu, T. Hubai, D. Kral, and J. Volec. Densities of 3-vertex
graphs. arXiv preprint arXiv:1610.02446, 2016.

115. A. Goodman. On sets of acquaintances and strangers at any party. Amer. Math. Monthly,
66(9):778–783, 1959.



599

116. H.-D. O. F. Gronau. On Sperner families in which no k sets have an empty intersection.
J. Combin. Theory Ser. A, 28(1):54–63, 1980.

117. W. H. Haemers. Interlacing eigenvalues and graphs. Linear Algebra Appl., 226/228:593–
616, 1995.

118. M. Hall, Jr. and J. D. Swift. Determination of Steiner triple systems of order 15. Math.
Tables Aids Comput., 9:146–152, 1955.

119. J. Han and Y. Kohayakawa. The maximum size of a non-trivial intersecting uniform
family that is not a subfamily of the Hilton-Milner family. Proc. Amer. Math.
Soc., 145(1):73–87, 2017.

120. H. Hatami and S. Norin. On the boundary of the region defined by homomorphism
densities. J. Comb., 10(2):203–219, 2019.

121. H. Hatami and S. Norine. Undecidability of linear inequalities in graph homomorphism
densities. J. Amer. Math. Soc., 24(2):547–565, 2011.

122. D. Hefetz and P. Keevash. A hypergraph Turán theorem via Lagrangians of intersecting
families. J. Combin. Theory Ser. A, 120(8):2020–2038, 2013.

123. A. Hilton and E. Milner. Some intersection theorems for systems of finite sets. Quart. J.
Math. Oxford, 18(1):369–384, 1967.

124. J. Hirst. The inducibility of graphs on four vertices. J. Graph Theory, 75(3):231–243,
2014.

125. A. Hocquenghem. Codes correcteurs d’erreurs. Chiffers, 2:147–156, 1959.
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190. D. Mubayi. Erdős-Ko-Rado for three sets. J. of Combin. theory. Ser. A, 113(3):547–550,
2006.

191. D. Mubayi. A hypergraph extension of Turán’s theorem. J. Combin. Theory, Ser. B,
96(1):122–134, 2006.

192. D. Mubayi. An intersection theorem for four sets. Adv. Math., 215(2):601–615, 2007.

193. D. Mubayi. Structure and stability of triangle-free set systems. Trans. Amer. Math. Soc.,
359(1):275–291, 2007.

194. D. Mubayi. Counting substructures I: color critical graphs. Adv. Math., 225(5):2731–2740,
2010.

195. D. Mubayi and O. Pikhurko. A new generalization of Mantel’s theorem to k-graphs. J.
Comb. Theory, Ser. B, 97(4):669–678, 2007.

196. D. Mubayi, O. Pikhurko, and B. Sudakov. Hypergraph Turán problem: Some open ques-
tions, 2011.

197. D. Mubayi and R. Ramadurai. Set systems with union and intersection constraints. J. of
Combin. theory. Ser. B, 99(3):639–642, 2009.



605
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200. J. Nešetřil and V. Rödl, editors. Mathematics of Ramsey theory, volume 5 of Algorithms
and Combinatorics. Springer-Verlag, Berlin, 1990.

201. V. Nikiforov. The number of cliques in graphs of given order and size. Trans. Amer. Math.
Soc., 363(3):1599–1618, 2011.

202. N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. System Sci., 49(2):149–
167, 1994.

203. S. Norin and L. Yepremyan. Sparse halves in dense triangle-free graphs. J. Combin.
Theory Ser. B, 115:1–25, 2015.

204. S. Norin and L. Yepremyan. Turán number of generalized triangles. J. Combin. Theory
Ser. A, 146:312–343, 2017.

205. S. Norin and L. Yepremyan. Turán numbers of extensions. J. Combin. Theory Ser. A,
155:476–492, 2018.

206. D. Olpp. A conjecture of Goodman and the multiplicities of graphs. Australas. J. Combin.,
14:267–282, 1996.

207. P. P. Pach and R. Palincza. Sets avoiding six-term arithmetic progressions in Zn6 are
exponentially small. arXiv preprint arXiv:2009.11897, 2020.

208. O. Pikhurko. An exact Turán result for the generalized triangle. Combinatorica, 28(2):187–
208, 2008.

209. O. Pikhurko. Exact computation of the hypergraph Turán function for expanded complete
2-graphs. J. Combin. Theory, Ser. B, 103(2):220–225, 2013.

210. O. Pikhurko. On possible Turán densities. Israel J. Math., 201(1):415–454, 2014.

211. N. Pippenger and M. C. Golumbic. The inducibility of graphs. J. Combinatorial Theory
Ser. B, 19(3):189–203, 1975.



606

212. D. K. Ray-Chaudhuri and R. M. Wilson. On t-designs. Osaka Math. J., 12(3):737–744,
1975.

213. R. Raz, O. Reingold, and S. Vadhan. Extracting all the randomness and reducing the error
in Trevisan’s extractors. In Annual ACM Symposium on Theory of Computing
(Atlanta, GA, 1999), pages 149–158. ACM, New York, 1999.

214. A. Razborov. On 3-hypergraphs with forbidden 4-vertex configurations. SIAM J. Discrete
Math., 24(3):946–963, 2010.

215. A. A. Razborov. Flag algebras. J. Symbolic Logic, 72(4):1239–1282, 2007.

216. A. A. Razborov. On the minimal density of triangles in graphs. Combin. Probab. Comput.,
17(4):603–618, 2008.

217. C. Reiher. The clique density theorem. Ann. of Math. (2), 184(3):683–707, 2016.

218. C. Reiher. K4-free graphs have sparse halves. arXiv preprint arXiv:2108.07297, 2021.

219. C. Reiher and S. Wagner. Maximum star densities. Studia Sci. Math. Hungar., 55(2):238–
259, 2018.
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1994.

223. W. Rudin. Principles of mathematical analysis. 3rd ed. International Series in Pure and
Applied Mathematics. Düsseldorf etc.: McGraw-Hill Book Company. X, 342 p.
DM 47.80 (1976)., 1976.

224. A. Sali. Some intersection theorems. Combinatorica, 12(3):351–361, 1992.



607

225. R. H. Schelp and A. Thomason. A remark on the number of complete and empty sub-
graphs. Combin. Probab. Comput., 7(2):217–219, 1998.

226. J. B. Shearer. On the independence number of sparse graphs. Random Structures Algo-
rithms, 7(3):269–271, 1995.

227. J. B. Shearer. A new construction for cancellative families of sets. Electron. J. Combin.,
3(1):3, 1996.

228. A. Sidorenko. What we know and what we do not know about Turán numbers. Graphs
Comb., 11(2):179–199, 1995.

229. A. Sidorenko. Extremal problems on the hypercube and the codegree Turán density of
complete r-graphs. SIAM J. Discrete Math., 32(4):2667–2674, 2018.

230. A. Sidorenko. On generalized Erdős-Ginzburg-Ziv constants for Zd2. J. Combin. Theory
Ser. A, 174:105254, 20, 2020.

231. A. F. Sidorenko. The maximal number of edges in a homogeneous hypergraph containing
no prohibited subgraphs. Math Notes, 41(3):247–259, 1987.

232. A. F. Sidorenko. On the maximal number of edges in a homogeneous hypergraph that
does not contain prohibited subgraphs. Mat. Zametki, 41(3):433–455, 459, 1987.

233. M. Simonovits. A method for solving extremal problems in graph theory, stability prob-
lems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319. Academic
Press, New York, 1968.

234. J. Spencer. Turán’s theorem for k-graphs. Discrete Math., 2:183–186, 1972.

235. E. M. Stein and R. Shakarchi. Real analysis. Measure theory, integration, and Hilbert
spaces. Princeton, NJ: Princeton University Press, 2005.

236. B. Sudakov. A few remarks on Ramsey-Turán-type problems. J. Combin. Theory Ser. B,
88(1):99–106, 2003.

237. B. Sudakov. Making a K4-free graph bipartite. Combinatorica, 27(4):509–518, 2007.

238. A. Thomason. A disproof of a conjecture of Erdős in Ramsey theory. J. London Math.
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